Skip to main content

Lower Bounds for Depth-2 and Depth-3 Boolean Circuits with Arbitrary Gates

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

Abstract

We consider depth-2 and 3 circuits over the basis consisting of all Boolean functions. For depth-3 circuits, we prove a lower bound Ω(nlogn) for the size of any circuit computing the cyclic convolution. For depth-2 circuits, a lower bound Ω(n 3/2) for the same function was obtained in our previous paper [10]. Here we present an improved proof of this bound. Both lower bounds are the best known for depth-3 and depth-2 circuits, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Heidelberg (1977)

    Google Scholar 

  2. Pippenger, N.: Superconcentrators of depth 2. J. of Computer and System Sciences 24, 82–90 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dolev, D., Dwork, C., Pippenger, N., Wigderson, A.: Superconcentrators, generalizers and generalized connectors with limited depth. In: Proc. 15th ACM STOC, pp. 42–51 (1983)

    Google Scholar 

  4. Pudlák, P., Savický, P.: On shifting networks. Theoretical Comput. Sci. 116, 415–419 (1993)

    Article  MATH  Google Scholar 

  5. Pudlák, P.: Communication in Bounded Depth Circuits. Combinatorica 14(2), 203–216 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alon, N., Pudlák, P.: Superconcentrators of depth 2 and 3; odd levels help (rarely). J. of Computer and System Sciences 48, 194–202 (1994)

    Article  MATH  Google Scholar 

  7. Pudlák, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks and communication complexity. SIAM J. on Computing 26(3), 605–633 (1997)

    Article  MATH  Google Scholar 

  8. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors and depth-two superconcentrators. SIAM J. of Discrete Mathematics 13(1), 2–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Raz, R., Shpilka, A.: Lower Bounds for Matrix Product, in Bounded Depth Circuits with Arbitrary Gates. SIAM J. Comput. 32(2), 488–513 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cherukhin, D.Y.: The lower estimate of complexity in the class of schemes of depth 2 without restrictions on a basis. Moscow Univ. Math. Bull. 60(4), 42–44 (2005)

    MathSciNet  Google Scholar 

  11. Jukna, S.: Entropy of operators or why matrix multiplication is hard for depth-two circuits (manuscript, 2008), www.thi.informatik.uni-frankfurt.de/~yukna

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cherukhin, D.Y. (2008). Lower Bounds for Depth-2 and Depth-3 Boolean Circuits with Arbitrary Gates. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy