Skip to main content

From Invariants to Canonization in Parallel

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

  • 988 Accesses

Abstract

A function f of a graph is called a complete graph invariant if two given graphs G and H are isomorphic exactly when f(G) = f(H). If additionally, f(G) is a graph isomorphic to G, then f is called a canonical form for graphs. Gurevich [9] proves that any polynomial-time computable complete invariant can be transformed into a polynomial-time computable canonical form. We extend this equivalence to the polylogarithmic-time model of parallel computation for classes of graphs having either bounded rigidity index or small separators. In particular, our results apply to three representative classes of graphs embeddable into a fixed surface, namely, to 3-connected graphs admitting either a polyhedral or a large-edge-width embedding as well as to all embeddable 5-connected graphs. Another application covers graphs with treewidth bounded by a constant k. Since for the latter class of graphs a complete invariant is computable in NC, it follows that graphs of bounded treewidth have a canonical form (and even a canonical labeling) computable in NC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Das, B., Mukhopadhyay, P.: On isomorphism and canonization of tournaments and hypertournaments. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 449–459. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Arvind, V., Torán, J.: Isomorphism testing: Pespective and open problems. Bulletin of the European Association of Theoretical Computer Science 86, 66–84 (2005)

    Google Scholar 

  3. Babai, L., Luks, E.: Canonical labeling of graphs. In: Proc. 15th ACM Symposium on Theory of Computing, pp. 171–183. ACM Press, New York (1983)

    Google Scholar 

  4. Chlebus, B.S., Diks, K., Radzik, T.: Testing isomorphism of outerplanar graphs in parallel. In: Koubek, V., Janiga, L., Chytil, M.P. (eds.) MFCS 1988. LNCS, vol. 324, pp. 220–230. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  5. Filotti, I.S., Mayer, J.N.: A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus. In: Proc. 12th ACM Symposium on Theory of Computing, pp. 236–243. ACM Press, New York (1980)

    Google Scholar 

  6. Fijavž, G., Mohar, B.: Rigidity and separation indices of Paley graphs. Discrete Mathematics 289, 157–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fijavž, G., Mohar, B.: Rigidity and separation indices of graphs in surfaces. A manuscript in preparation, cited in [6]

    Google Scholar 

  8. Grohe, M.: Isomorphism testing for embeddable graphs through definability. In: Proc. 32th ACM Symposium on Theory of Computing, pp. 63–72. ACM Press, New York (2000)

    Google Scholar 

  9. Gurevich, Y.: From invariants to canonization. Bulletin of the European Association of Theoretical Computer Science 63, 115–119 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 3–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Immerman, N., Lander, E.: Describing graphs: a first order approach to graph canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81. Springer, Heidelberg (1990)

    Google Scholar 

  12. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  13. Lichtenstein, D.: Isomorphism for graphs embeddable on the projective plane. In: Proc. 12th ACM Symposium on Theory of Computing, pp. 218–224. ACM Press, New York (1980)

    Google Scholar 

  14. Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th ACM Symposium on Theory of Computing, pp. 400–404. ACM Press, New York (1992)

    Google Scholar 

  15. Miller, G.L.: Isomorphism testing for graphs of bounded genus. In: Proc. 12th ACM Symposium on Theory of Computing, pp. 225–235. ACM Press, New York (1980)

    Google Scholar 

  16. Miller, G.L.: Isomorphism of k-contractible graphs. A generalization of bounded valence and bounded genus. Information and Computation 56, 1–20 (1983)

    MATH  Google Scholar 

  17. Miller, G.L., Reif, J.H.: Parallel tree contraction. Part 2: Further applications. SIAM Journal on Computing 20, 1128–1147 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mohar, B., Robertson, N.: Flexibility of polyhedral embeddings of graphs in surfaces. J. Combin. Theory, Ser. B 83, 38–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mohar, B., Thomassen, C.: Graphs on surfaces. The John Hopkins University Press (2001)

    Google Scholar 

  20. Ponomarenko, I.: The isomorphism problem for classes of graphs closed under contraction. In: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (in Russian), vol. 174, pp. 147–177 (1988); English translation in: Journal of Mathematical Sciences 55, 1621–1643 (1991)

    Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thomassen, C.: Embeddings of graphs with no short noncontractible cycles. J. Combin. Theory, Ser. B 48, 155–177 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Whitney, H.: 2-isomorphic graphs. Amer. Math. J. 55, 245–254 (1933)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köbler, J., Verbitsky, O. (2008). From Invariants to Canonization in Parallel. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy