Skip to main content

Algorithms for Multiterminal Cuts

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

Abstract

Given a graph G = (V,E) with n vertices and m edges, and a subset T of l vertices called terminals, the Edge (respectively, Vertex) Multiterminal Cut problem is to find a set of k edges (non-terminal vertices), whose removal from G separates each terminal from all the others. These two problems are NP-hard for l ≥ 3 but well-known to be polynomial-time solvable for l = 2 by the flow technique. In this paper, we show that Edge Multiterminal Cut is polynomial-time solvable for k = O(logn) by presenting an O(2k lT(n,m)) algorithm, where T(n,m) = O( min (n 2/3,m 1/2)m) is the running time of finding a minimum (s,t) cut in an unweighted graph. We also give two algorithms for Vertex Multiterminal Cut that run in O(l k T(n,m)) time and O((k!)2 T(n,m)) time respectively. The former one indicates that Vertex Multiterminal Cut is solvable in polynomial time for l being a constant and k = O(logn), and the latter one improves the best known algorithm of running time \(O(4^{k^3}n^{O(1)})\). When l = 3, we show that the running times can be improved to O(1.415k T(n,m)) for Edge Multiterminal Cut and O(2.059k T(n,m)) for Vertex Multiterminal Cut. Furthermore, we present a simple idea to solve another important problem Multicut by finding minimum multiterminal cuts. Our algorithms for Multicuts are also faster than the previously best algorithm.

Based on a notion farthest minimum isolating cut, we present some properties for Multiterminal Cuts, which help shed light on the structure of optimal cut problems, and enables us to design efficient algorithms for Multiterminal Cuts, as well as some other related cut problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Calinescu, G., Fernandes, C., Reed, B.: Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. J. Algorithms 48(2), 333–359 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Calinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation algorithm for multiway cut. Journal of Computer and Systems Sciences 60(3), 564–574 (2000); a preliminary version appeared in STOC 1998 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, Springer, Heidelberg (2007)

    Google Scholar 

  4. Costa, M.-C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: A survey. European Journal of Operational Research 162(1), 55–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dinic, E.: Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  7. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  8. Feige, U., Mahdian, M.: Finding small balanced separators. In: Proceedings of the 38th Annual ACM symposium on Theory of Computing (STOC 2006) (2006)

    Google Scholar 

  9. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs. J. Algorithms 50(1), 49–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldschmidt, O., Hochbaum, D.: A polynomial algorithm for the k-cut problem for fixed k. Mathematics of Operations Research 19(1), 24–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and exact algorithms for multicut. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Ford, J.R., Fullkerson, D.R.: Flows in networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  14. Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric embedding relaxation of minimum multiway cut. In: Proceedings of the 31th Annual ACM Symposium on Theory of Computing (STOC 1999) (1999)

    Google Scholar 

  15. Marx, D.: The closest substring problem with small distances. In: Proceedings of the 46th Annual Symposium on Foundations of Computer Science (FOCS 2005) (2005)

    Google Scholar 

  16. Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Naor, J., Zosin, L.: A 2-approximation algorithm for the directed multiway cut problem. SIAM J. Comput. 31(2), 477–482 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yeh, W.-C.: A simple algorithm for the planar multiway cut problem. J. Algorithms 39(1), 68–77 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiao, M. (2008). Algorithms for Multiterminal Cuts. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy