Skip to main content

Two Sources Are Better Than One for Increasing the Kolmogorov Complexity of Infinite Sequences

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

Abstract

The randomness rate of an infinite binary sequence is characterized by the sequence of ratios between the Kolmogorov complexity and the length of the initial segments of the sequence. It is known that there is no uniform effective procedure that transforms one input sequence into another sequence with higher randomness rate. By contrast, we display such a uniform effective procedure having as input two independent sequences with positive but arbitrarily small constant randomness rate. Moreover the transformation is a truth-table reduction and the output has randomness rate arbitrarily close to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bienvenu, L., Doty, D., Stephan, F.: Constructive dimension and weak truth-table degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, Springer, Heidelberg (to appear, 2007); Available as Technical Report arXiv:cs/0701089 ar arxiv.org

    Chapter  Google Scholar 

  2. Buhrman, H., Fortnow, L., Newman, I., Vereshchagin, N.: Increasing Kolmogorov complexity. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 412–421. Springer, Heidelberg (2005)

    Google Scholar 

  3. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few independent sources. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 384–393 (2004)

    Google Scholar 

  4. Calude, C., Zimand, M.: Algorithmically independent sequences, CORR Technical report arxiv:0802-0487 (2008)

    Google Scholar 

  5. Doty, D.: Dimension extractors and optimal decompression. Technical Report arXiv:cs/0606078, Computing Research Repository, arXiv.org, Theory of Computing Systems (to appear, May 2007)

    Google Scholar 

  6. Fortnow, L., Hitchcock, J., Pavan, A., Vinodchandran, N.V., Wang, F.: Extracting Kolmogorov complexity with applications to dimension zero-one laws. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 335–345. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Lutz, J.: The dimensions of individual strings and sequences. Information and Control 187, 49–79 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters 84, 1–3 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Miller, J., Nies, A.: Randomness and computability. Open questions. Bull. Symb. Logic 12(3), 390–410 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nies, A., Reimann, J.: A lower cone in the wtt degrees of non-integral effective dimension. In: Proceedings of IMS workshop on Computational Prospects of Infinity, Singapore (to appear, 2006)

    Google Scholar 

  11. Reimann, J.: Computability and fractal dimension. Technical report, Universität Heidelberg, Ph.D. thesis (2004)

    Google Scholar 

  12. Ryabko, B.: Coding of combinatorial sources and Hausdorff dimension. Doklady Akademii Nauk SSR 277, 1066–1070 (1984)

    MathSciNet  Google Scholar 

  13. Shen, A.: Algorithmic information theory and Kolmogorov complexity. Technical Report 2000-034, Uppsala Universitet (December 2000)

    Google Scholar 

  14. Staiger, L.: Constructive dimension equals Kolmogorov complexity. Information Processing Letters 93, 149–153 (2005); Preliminary version: Research Report CDMTCS-210, Univ. of Auckland (January 2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zimand, M. (2008). Two Sources Are Better Than One for Increasing the Kolmogorov Complexity of Infinite Sequences. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy