Abstract
The Justification Logic is a family of logical systems obtained from epistemic logics by adding new type of formulas which reads as t is a justification for F. The major epistemic modal logic S4 has a well-known Tarski topological interpretation which interprets \(\Box F\) as the interior of F (a topological equivalent of the ‘knowable part of F’). In this paper we extend the Tarski topological interpretation from epistemic modal logics to justification logics which have both: knowledge assertions \(\Box F\) and justification assertions . This topological semantics interprets modality as the interior, terms t represent tests, and a justification assertion represents a part of F which is accessible for test t. We establish a number of soundness and completeness results with respect to Kripke topology and the real line topology for S4-based systems of Justification Logic.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Artemov, S.: Logic of proofs. Annals of Pure and Applied Logic 67(1), 29–59 (1994)
Artemov, S.: Operational modal logic. Technical Report MSI 95-29, Cornell University (1995)
Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7(1), 1–36 (2001)
Artemov, S.: Kolmogorov and Gödel’s approach to intuitionistic logic: current developments. Russian Mathematical Surveys 59(2), 203–229 (2004)
Artemov, S.: Justified common knowledge. Theoretical Computer Science 357(1-3), 4–22 (2006)
Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer, Dordrecht (2004)
Artemov, S., Davoren, J., Nerode, A.: Modal logics and topological semantics for hybrid systems. Technical Report MSI 97-05, Cornell University (1997)
Artemov, S., Nogina, E.: Logic of knowledge with justifications from the provability perspective. Technical Report TR-2004011, CUNY Ph.D. Program in Computer Science (2004)
Artemov, S., Nogina, E.: Introducing justification into epistemic logic. J. of Logic and Computation 15(6), 1059–1073 (2005)
Artemov, S., Nogina, E.: On epistemic logic with justification. In: van der Meyden, R. (ed.) Theoretical Aspects of Rationality and Knowledge. The Tenth Conference (TARK 2005), Singapore, June 10-12, 2005, pp. 279–294. National University of Singapore (2005)
Artemov, S., Nogina, E.: On topological semantics of justification logic. In: Algebraic and Topological Methods in Non-Classical Logics (TANCL 2007), Oxford, England (2007), http://www2.maths.ox.ac.uk/notices/events/special/tancl07/
Bezhanishvili, G., Gehrke, M.: Completeness of S4 with respect to the real line: revisited. Annals of Pure and Applied Logic 131, 287–301 (2005)
Dabrowski, A., Moss, L., Parikh, R.: Topological Reasoning and the Logic of Knowledge. Annals of Pure and Applied Logic 78(1-3), 73–110 (1996)
Davoren, J., Nerode, A.: Logics for Hybrid Systems (invited paper). Proceedings of the IEEE 88(7), 985–1010 (2000)
de Jongh, D., Japaridze, G.: Logic of provability. In: Buss (ed.) Handbook of Proof Theory, pp. 475–546. Elsevier, Amsterdam (1998)
Fitting, M.: A semantics for the logic of proofs. Technical Report TR-2003012, CUNY Ph.D. Program in Computer Science (2003)
Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)
Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse Math. Kolloq. 4, 39–40 (1933); English translation in: Feferman, S., et al., (eds) Kurt Gödel Collected Works, vol. I, pp. 301–303. Oxford University Press, Oxford, Clarendon Press, New York (1986)
Gödel, K.: Vortrag bei Zilsel, 1938. In: Feferman, S. (ed.) Kurt Gödel Collected Works, vol. III, pp. 86–113. Oxford University Press, Oxford (1995)
Kremer, P., Mints, G.: Dynamic topological logic. Annals of Pure and Applied Logic 131, 133–158 (2005)
Kuratowski, C.: Sur l’operation a de l’analysis situs. Fundamenta Mathematicae 3, 181–199 (1922)
Lewis, C.I.: A Survey of Symbolic Logic. University of California Press (1918)
Lewis, C.I., Langford, C.H.: Symbolic logic. Dover New York (1932)
McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45, 141–191 (1944)
McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential calculi of Lewis and Heyting. J. of Symbolic Logic 13, 1–15 (1948)
Mints, G., Zhang, T.: A proof of topological completeness for S4 in (0, 1). Annals of Pure and Applied Logic 133(1-3), 231–245 (2005)
Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)
Nogina, E.: Logic of proofs with the strong provability operator. Technical Report ILLC Prepublication Series ML-94-10, Institute for Logic, Language and Computation, University of Amsterdam (1994)
Nogina, E.: Grzegorczyk logic with arithmetical proof operators. Fundamental and Applied Mathematics 2(2), 483–499 (1996) (in Russian)
Nogina, E.: On logic of proofs and provability. Bull. of Symbolic Logic 12(2), 356 (2006)
Nogina, E.: Epistemic completeness of GLA. Bull. of Symbolic Logic 13(3), 407 (2007)
Riesz, F.: Stetigkeitsbegriff und abstrakte mengenlehre. In: Atti del IV Congr. Internat. d. Mat., vol. II, Roma (1909)
Sidon, T.: Provability logic with operations on proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 342–353. Springer, Heidelberg (1997)
Slavnov, S.: On completeness of dynamic topological logic. Moscow Math J. 5(2), 477–492 (2005)
Yavorskaya (Sidon), T.: Logic of proofs and provability. Annals of Pure and Applied Logic 113(1-3), 345–372 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Artemov, S., Nogina, E. (2008). Topological Semantics of Justification Logic. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-79709-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-79708-1
Online ISBN: 978-3-540-79709-8
eBook Packages: Computer ScienceComputer Science (R0)