Skip to main content

Topological Semantics of Justification Logic

  • Conference paper
Computer Science – Theory and Applications (CSR 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5010))

Included in the following conference series:

Abstract

The Justification Logic is a family of logical systems obtained from epistemic logics by adding new type of formulas which reads as t is a justification for F. The major epistemic modal logic S4 has a well-known Tarski topological interpretation which interprets \(\Box F\) as the interior of F (a topological equivalent of the ‘knowable part of F’). In this paper we extend the Tarski topological interpretation from epistemic modal logics to justification logics which have both: knowledge assertions \(\Box F\) and justification assertions . This topological semantics interprets modality as the interior, terms t represent tests, and a justification assertion represents a part of F which is accessible for test t. We establish a number of soundness and completeness results with respect to Kripke topology and the real line topology for S4-based systems of Justification Logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artemov, S.: Logic of proofs. Annals of Pure and Applied Logic 67(1), 29–59 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Artemov, S.: Operational modal logic. Technical Report MSI 95-29, Cornell University (1995)

    Google Scholar 

  3. Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7(1), 1–36 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Artemov, S.: Kolmogorov and Gödel’s approach to intuitionistic logic: current developments. Russian Mathematical Surveys 59(2), 203–229 (2004)

    Article  MathSciNet  Google Scholar 

  5. Artemov, S.: Justified common knowledge. Theoretical Computer Science 357(1-3), 4–22 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Artemov, S., Beklemishev, L.: Provability logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 13, pp. 229–403. Kluwer, Dordrecht (2004)

    Google Scholar 

  7. Artemov, S., Davoren, J., Nerode, A.: Modal logics and topological semantics for hybrid systems. Technical Report MSI 97-05, Cornell University (1997)

    Google Scholar 

  8. Artemov, S., Nogina, E.: Logic of knowledge with justifications from the provability perspective. Technical Report TR-2004011, CUNY Ph.D. Program in Computer Science (2004)

    Google Scholar 

  9. Artemov, S., Nogina, E.: Introducing justification into epistemic logic. J. of Logic and Computation 15(6), 1059–1073 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Artemov, S., Nogina, E.: On epistemic logic with justification. In: van der Meyden, R. (ed.) Theoretical Aspects of Rationality and Knowledge. The Tenth Conference (TARK 2005), Singapore, June 10-12, 2005, pp. 279–294. National University of Singapore (2005)

    Google Scholar 

  11. Artemov, S., Nogina, E.: On topological semantics of justification logic. In: Algebraic and Topological Methods in Non-Classical Logics (TANCL 2007), Oxford, England (2007), http://www2.maths.ox.ac.uk/notices/events/special/tancl07/

  12. Bezhanishvili, G., Gehrke, M.: Completeness of S4 with respect to the real line: revisited. Annals of Pure and Applied Logic 131, 287–301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dabrowski, A., Moss, L., Parikh, R.: Topological Reasoning and the Logic of Knowledge. Annals of Pure and Applied Logic 78(1-3), 73–110 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Davoren, J., Nerode, A.: Logics for Hybrid Systems (invited paper). Proceedings of the IEEE 88(7), 985–1010 (2000)

    Article  Google Scholar 

  15. de Jongh, D., Japaridze, G.: Logic of provability. In: Buss (ed.) Handbook of Proof Theory, pp. 475–546. Elsevier, Amsterdam (1998)

    Google Scholar 

  16. Fitting, M.: A semantics for the logic of proofs. Technical Report TR-2003012, CUNY Ph.D. Program in Computer Science (2003)

    Google Scholar 

  17. Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied Logic 132(1), 1–25 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse Math. Kolloq. 4, 39–40 (1933); English translation in: Feferman, S., et al., (eds) Kurt Gödel Collected Works, vol. I, pp. 301–303. Oxford University Press, Oxford, Clarendon Press, New York (1986)

    Google Scholar 

  19. Gödel, K.: Vortrag bei Zilsel, 1938. In: Feferman, S. (ed.) Kurt Gödel Collected Works, vol. III, pp. 86–113. Oxford University Press, Oxford (1995)

    Google Scholar 

  20. Kremer, P., Mints, G.: Dynamic topological logic. Annals of Pure and Applied Logic 131, 133–158 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kuratowski, C.: Sur l’operation a de l’analysis situs. Fundamenta Mathematicae 3, 181–199 (1922)

    Google Scholar 

  22. Lewis, C.I.: A Survey of Symbolic Logic. University of California Press (1918)

    Google Scholar 

  23. Lewis, C.I., Langford, C.H.: Symbolic logic. Dover New York (1932)

    Google Scholar 

  24. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45, 141–191 (1944)

    Article  MathSciNet  Google Scholar 

  25. McKinsey, J.C.C., Tarski, A.: Some theorems about the sentential calculi of Lewis and Heyting. J. of Symbolic Logic 13, 1–15 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mints, G., Zhang, T.: A proof of topological completeness for S4 in (0, 1). Annals of Pure and Applied Logic 133(1-3), 231–245 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)

    Google Scholar 

  28. Nogina, E.: Logic of proofs with the strong provability operator. Technical Report ILLC Prepublication Series ML-94-10, Institute for Logic, Language and Computation, University of Amsterdam (1994)

    Google Scholar 

  29. Nogina, E.: Grzegorczyk logic with arithmetical proof operators. Fundamental and Applied Mathematics 2(2), 483–499 (1996) (in Russian)

    Google Scholar 

  30. Nogina, E.: On logic of proofs and provability. Bull. of Symbolic Logic 12(2), 356 (2006)

    Google Scholar 

  31. Nogina, E.: Epistemic completeness of GLA. Bull. of Symbolic Logic 13(3), 407 (2007)

    Google Scholar 

  32. Riesz, F.: Stetigkeitsbegriff und abstrakte mengenlehre. In: Atti del IV Congr. Internat. d. Mat., vol. II, Roma (1909)

    Google Scholar 

  33. Sidon, T.: Provability logic with operations on proofs. In: Adian, S., Nerode, A. (eds.) LFCS 1997. LNCS, vol. 1234, pp. 342–353. Springer, Heidelberg (1997)

    Google Scholar 

  34. Slavnov, S.: On completeness of dynamic topological logic. Moscow Math J. 5(2), 477–492 (2005)

    MATH  MathSciNet  Google Scholar 

  35. Yavorskaya (Sidon), T.: Logic of proofs and provability. Annals of Pure and Applied Logic 113(1-3), 345–372 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward A. Hirsch Alexander A. Razborov Alexei Semenov Anatol Slissenko

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Artemov, S., Nogina, E. (2008). Topological Semantics of Justification Logic. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds) Computer Science – Theory and Applications. CSR 2008. Lecture Notes in Computer Science, vol 5010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79709-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79709-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79708-1

  • Online ISBN: 978-3-540-79709-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy