Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5045))

  • 428 Accesses

Abstract

The study of robustness problems for computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discusses approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23, 5–48 (1991)

    Article  Google Scholar 

  2. Schirra, S.: Precision and robustness in geometric computations. In: van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) CISM School 1996. LNCS, vol. 1340, Springer, Heidelberg (1997)

    Google Scholar 

  3. Hoffmann, C.M.: Robustness in geometric computations. Journal of Computing and Information Science in Engineering 1, 143–156 (2001)

    Article  Google Scholar 

  4. Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 927–952. CRC Press, Boca Raton (2004)

    Google Scholar 

  5. Keyser, J.: Robustness issues in computational geometry. Technical report, Comp. 234 Final Paper, Duke University (1997)

    Google Scholar 

  6. Sugihara, K., Iri, M.: A solid modelling system free from topological inconsistency. Journal of Information Processing 12, 380–393 (1989)

    MATH  Google Scholar 

  7. Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for voronoi diagrams. IJCGA 4, 179–228 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Sugihara, K.: A robust and consistent algorithm for intersecting convex polyhedra. Computer Graphics Forum 13, 45–54 (1994)

    Article  Google Scholar 

  9. Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)

    MATH  Google Scholar 

  10. Michelucci, D., Moreau, J.M.: Lazy arithmetic. IEEE Transactions on Computers 46, 961–975 (1997)

    Article  MathSciNet  Google Scholar 

  11. Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schönherr, S.: The CGAL kernel: A basis for geometric computation. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 191–202. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. Klatte, K., Kulisch, U., Lawo, C., Rausch, M., Wiethoff, A.: C-XSC, A C++ class library for extended scientific computing. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  13. Funke, S., Mehlhorn, K.: LOOK – a lazy object-oriented kernel for geometric computations. In: Proceedings 16th Annual ACM Symposium on Computational Geometry, Hong-Kong, pp. 156–165. ACM Press, New York (2000)

    Google Scholar 

  14. Mehlorn, K., Naher, S.: LEDA: A platform for combinatorial and geometric computing. Communications of the ACM 38, 96–102 (1995)

    Article  Google Scholar 

  15. Mehlhorn, K., Naher, S.: The LEDA Platform for Combinatorial and Geometric Computing, 1018 pages. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  16. Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: Proceedings 15th Annual ACM Symposium on Computational Geometry, pp. 351–359. ACM Press, New York (1999)

    Google Scholar 

  17. Canny, J.: The complexity of robot motion planning. M.I.T. Press, Cambridge (1988)

    Google Scholar 

  18. Pion, S., Yap, C.: Constructive root bound method for k-ary rational input numbers. In: Proc. 18th ACM Symp. on Computational Geometry, ACM Press, San Diego, California (2003)

    Google Scholar 

  19. Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: 12th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001)

    Google Scholar 

  20. Mignotte, M., Stefanescu, D.: Polynomials: An algorithmic approach. Discrete Mathematics and Theoretical Computer Science Series, vol. XI. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  21. Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A strong and easily computable separation bound for arithmetic expressions involving square roots. In: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms table of contents, New Orleans, Louisiana, United States, pp. 702–709 (1997)

    Google Scholar 

  22. Scheinerman, E.R.: When close enough is close enough. American Mathematical Monthly 107, 489–499 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Keyser, J., Culver, T., Foskey, M., Krishnan, S., Manocha, D.: ESOLID - a system for exact boundary evaluation. Computer-Aided Design (Special Issue on Solid Modeling) 36, 175–193 (2004)

    Google Scholar 

  24. Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  25. Andrade, M.V.A., Comba, J.L.D., Stolfi, J.: Affine arithmetic. In: Abstracts of the International Conference on Interval and Computer-Algebraic Methods in Science and Engineering (INTERVAL 1994), St. Petersburg (Russia), pp. 36–40 (1994)

    Google Scholar 

  26. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and applications. Numerical Algorithms 37, 147–158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, London (1990)

    MATH  Google Scholar 

  28. Hu, C.Y., Patrikalakis, N., Ye, X.: Robust interval solid modelling. part 1: Representations. Part 2: Boundary evaluation. CAD 28, 807–817, 819–830 (1996)

    Google Scholar 

  29. Sherbrooke, E.C., Patrikalakis, N.: Computation of the solutions of nonlinear polynomial systems. Computer Aided Geometric Design 10, 379–405 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Garloff, J., Smith, A.P.: Investigation of a subdivision based algorithm for solving systems of polynomial equations. Journal of nonlinear analysis: Series A Theory and Methods 47, 167–178 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nataraj, P.S.V., Kotecha, K.: Global optimization with higher order inclusion function forms part 1: A combined Taylor-Bernstein form. Reliable Computing 10, 27–44 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nataraj, P.S.V., Kotecha, K.: Higher order convergence for multidimensional functions with a new Taylor-Bernstein form as inclusion function. Reliable Computing 9, 185–203 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mourrain, B., Rouillier, F., Roy, M.F.: Bernstein’s basis and real root isolation. Technical Report 5149, INRIA Rocquencourt (2004)

    Google Scholar 

  34. Michelucci, D., Foufou, S.: Interval based tracing of strange attractors. International Journal of Computational Geometry and Applications 16, 27–39 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kearfott, R.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  36. Hansen, E.R., Walster, G.W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (2003)

    Google Scholar 

  37. Edalat, A., Lieutier, A.: Foundation of a computable solid modelling. Theoretical Computer Science 2, 319–345 (2002)

    Article  MathSciNet  Google Scholar 

  38. Foufou, S., Brun, J., Bouras, A.: Surfaces intersection for solid algebra: A classification algorithm. In: Strasser, W., Klein, R., Rau, R. (eds.) Proc. Theory and Practice of Geometric Modeling 1996, Tubingen, Germany, Springer, Heidelberg (1996)

    Google Scholar 

  39. Weihrauch, K.: Computable Analysis An Introduction. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  40. Boehm, H.J., Cartwright, R., Riggle, M., O’Donnell, M.: Exact real arithmetic: a case study in higher order programming. In: Proc. ACM Conference on Lisp and Functional Programming, pp. 162–173 (1986)

    Google Scholar 

  41. Lester, D., Gowland, P.: Using pvs to validate the algorithms of an exact arithmetic. Theoretical Computer Science 291, 203–218 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Vignes, J., Alt, R.: An efficient stochastic method for round-off error analysis. In: Accurate Scientific Computations, pp. 183–205 (1985)

    Google Scholar 

  43. Michelucci, D., Moreau, J.M.: ZEA – a zero-free exact arithmetic. In: Proceedings 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, pp. 153–157 (2000)

    Google Scholar 

  44. Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph 9, 66–104 (1990)

    Article  MATH  Google Scholar 

  45. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 4, 701–717 (1980)

    Article  Google Scholar 

  46. Agrawal, A., Requicha, A.G.: A paradigm for the robust design of algorithms for geometric modeling. In: Computer Graphics Forum (EUROGRAPHICS 1994), vol. 13, pp. C–33–C–44 (1994)

    Google Scholar 

  47. Monagan, M., Gonnet, G.: Signature functions for algebraic numbers. In: Proc. ISSAC, pp. 291–296. ACM Press, New York (1994)

    Google Scholar 

  48. Benouamer, M., Jaillon, P., Michelucci, D., Moreau, J.: Hashing lazy numbers. Computing 53, 205–217 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tulone, D., Yap, C., Li, C.: Randomized zero testing of radical expressions and elementary geometry theorem proving. In: International Workshop on Automated Deduction in Geometry (ADG 2000) (2000)

    Google Scholar 

  50. Gonnet, G.H.: New results for random determination of equivalence of expressions. In: SYMSAC 1986: Proceedings of the fifth ACM symposium on Symbolic and algebraic computation, pp. 127–131. ACM Press, New York (1986)

    Chapter  Google Scholar 

  51. Hong, J.: Proving by example and gap theorem. In: I.C.S. (ed.): 27th symposium on Foundations of computer science, Toronto, Ontario, 107–116 (in press,1986)

    Google Scholar 

  52. Kortenkamp, U.: Foundations of Dynamic Geometry. PhD thesis, ETH Zurich, Institut fur Theoretische Informatik (1999)

    Google Scholar 

  53. Foufou, S., Jurzak, J.P., Michelucci, D.: Numerical decomposition of geometric constraints. In: Proc. ACM Conference on Solid and Physical Modeling, pp. 143–151 (2005)

    Google Scholar 

  54. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete and Computational Geometry 4, 387–421 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  55. Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete and Computational Geometry 2, 195–222 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  56. Laumond, J.P. (ed.): Robot Motion Planning and Control. Lecture Notes in Control and Information Science. Springer, Heidelberg (1998)

    Google Scholar 

  57. Michelucci, D., Neveu, M.: Shortest circuits with given homotopy in a constellation. In: 9th ACM Symp. Solid Modeling and Applications, pp. 297–302 (2004)

    Google Scholar 

  58. Choi, J., Sellen, J., Yap, C.: Approximate Euclidean shortest path in 3-space. Int’l. J. Computational Geometry and Applications 271–295 (1997); Journal special issue. Also in 10th ACM Symposium on Computational Geometry (1994)

    Google Scholar 

  59. Glassner, A.: An Introduction to Ray Tracing. In: Glassner, A. (ed.), Academic Press, London (1989) ISBN 0-12-286160-4

    Google Scholar 

  60. Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann Publishers Inc., San Francisco (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Hertling Christoph M. Hoffmann Wolfram Luther Nathalie Revol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michelucci, D., Moreau, J.M., Foufou, S. (2008). Robustness and Randomness. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds) Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol 5045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85521-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85521-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85520-0

  • Online ISBN: 978-3-540-85521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy