Abstract
The study of robustness problems for computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discusses approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys 23, 5–48 (1991)
Schirra, S.: Precision and robustness in geometric computations. In: van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P. (eds.) CISM School 1996. LNCS, vol. 1340, Springer, Heidelberg (1997)
Hoffmann, C.M.: Robustness in geometric computations. Journal of Computing and Information Science in Engineering 1, 143–156 (2001)
Yap, C.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 927–952. CRC Press, Boca Raton (2004)
Keyser, J.: Robustness issues in computational geometry. Technical report, Comp. 234 Final Paper, Duke University (1997)
Sugihara, K., Iri, M.: A solid modelling system free from topological inconsistency. Journal of Information Processing 12, 380–393 (1989)
Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm for voronoi diagrams. IJCGA 4, 179–228 (1994)
Sugihara, K.: A robust and consistent algorithm for intersecting convex polyhedra. Computer Graphics Forum 13, 45–54 (1994)
Knuth, D.E.: Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)
Michelucci, D., Moreau, J.M.: Lazy arithmetic. IEEE Transactions on Computers 46, 961–975 (1997)
Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schönherr, S.: The CGAL kernel: A basis for geometric computation. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 191–202. Springer, Heidelberg (1996)
Klatte, K., Kulisch, U., Lawo, C., Rausch, M., Wiethoff, A.: C-XSC, A C++ class library for extended scientific computing. Springer, Heidelberg (1993)
Funke, S., Mehlhorn, K.: LOOK – a lazy object-oriented kernel for geometric computations. In: Proceedings 16th Annual ACM Symposium on Computational Geometry, Hong-Kong, pp. 156–165. ACM Press, New York (2000)
Mehlorn, K., Naher, S.: LEDA: A platform for combinatorial and geometric computing. Communications of the ACM 38, 96–102 (1995)
Mehlhorn, K., Naher, S.: The LEDA Platform for Combinatorial and Geometric Computing, 1018 pages. Cambridge University Press, Cambridge (1999)
Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: Proceedings 15th Annual ACM Symposium on Computational Geometry, pp. 351–359. ACM Press, New York (1999)
Canny, J.: The complexity of robot motion planning. M.I.T. Press, Cambridge (1988)
Pion, S., Yap, C.: Constructive root bound method for k-ary rational input numbers. In: Proc. 18th ACM Symp. on Computational Geometry, ACM Press, San Diego, California (2003)
Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: 12th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2001)
Mignotte, M., Stefanescu, D.: Polynomials: An algorithmic approach. Discrete Mathematics and Theoretical Computer Science Series, vol. XI. Springer, Heidelberg (1999)
Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A strong and easily computable separation bound for arithmetic expressions involving square roots. In: Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms table of contents, New Orleans, Louisiana, United States, pp. 702–709 (1997)
Scheinerman, E.R.: When close enough is close enough. American Mathematical Monthly 107, 489–499 (2000)
Keyser, J., Culver, T., Foskey, M., Krishnan, S., Manocha, D.: ESOLID - a system for exact boundary evaluation. Computer-Aided Design (Special Issue on Solid Modeling) 36, 175–193 (2004)
Moore, R.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)
Andrade, M.V.A., Comba, J.L.D., Stolfi, J.: Affine arithmetic. In: Abstracts of the International Conference on Interval and Computer-Algebraic Methods in Science and Engineering (INTERVAL 1994), St. Petersburg (Russia), pp. 36–40 (1994)
de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and applications. Numerical Algorithms 37, 147–158 (2004)
Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, London (1990)
Hu, C.Y., Patrikalakis, N., Ye, X.: Robust interval solid modelling. part 1: Representations. Part 2: Boundary evaluation. CAD 28, 807–817, 819–830 (1996)
Sherbrooke, E.C., Patrikalakis, N.: Computation of the solutions of nonlinear polynomial systems. Computer Aided Geometric Design 10, 379–405 (1993)
Garloff, J., Smith, A.P.: Investigation of a subdivision based algorithm for solving systems of polynomial equations. Journal of nonlinear analysis: Series A Theory and Methods 47, 167–178 (2001)
Nataraj, P.S.V., Kotecha, K.: Global optimization with higher order inclusion function forms part 1: A combined Taylor-Bernstein form. Reliable Computing 10, 27–44 (2004)
Nataraj, P.S.V., Kotecha, K.: Higher order convergence for multidimensional functions with a new Taylor-Bernstein form as inclusion function. Reliable Computing 9, 185–203 (2003)
Mourrain, B., Rouillier, F., Roy, M.F.: Bernstein’s basis and real root isolation. Technical Report 5149, INRIA Rocquencourt (2004)
Michelucci, D., Foufou, S.: Interval based tracing of strange attractors. International Journal of Computational Geometry and Applications 16, 27–39 (2006)
Kearfott, R.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht (1996)
Hansen, E.R., Walster, G.W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (2003)
Edalat, A., Lieutier, A.: Foundation of a computable solid modelling. Theoretical Computer Science 2, 319–345 (2002)
Foufou, S., Brun, J., Bouras, A.: Surfaces intersection for solid algebra: A classification algorithm. In: Strasser, W., Klein, R., Rau, R. (eds.) Proc. Theory and Practice of Geometric Modeling 1996, Tubingen, Germany, Springer, Heidelberg (1996)
Weihrauch, K.: Computable Analysis An Introduction. Springer, Heidelberg (2000)
Boehm, H.J., Cartwright, R., Riggle, M., O’Donnell, M.: Exact real arithmetic: a case study in higher order programming. In: Proc. ACM Conference on Lisp and Functional Programming, pp. 162–173 (1986)
Lester, D., Gowland, P.: Using pvs to validate the algorithms of an exact arithmetic. Theoretical Computer Science 291, 203–218 (2003)
Vignes, J., Alt, R.: An efficient stochastic method for round-off error analysis. In: Accurate Scientific Computations, pp. 183–205 (1985)
Michelucci, D., Moreau, J.M.: ZEA – a zero-free exact arithmetic. In: Proceedings 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, pp. 153–157 (2000)
Edelsbrunner, H., Mücke, E.P.: Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph 9, 66–104 (1990)
Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 4, 701–717 (1980)
Agrawal, A., Requicha, A.G.: A paradigm for the robust design of algorithms for geometric modeling. In: Computer Graphics Forum (EUROGRAPHICS 1994), vol. 13, pp. C–33–C–44 (1994)
Monagan, M., Gonnet, G.: Signature functions for algebraic numbers. In: Proc. ISSAC, pp. 291–296. ACM Press, New York (1994)
Benouamer, M., Jaillon, P., Michelucci, D., Moreau, J.: Hashing lazy numbers. Computing 53, 205–217 (1994)
Tulone, D., Yap, C., Li, C.: Randomized zero testing of radical expressions and elementary geometry theorem proving. In: International Workshop on Automated Deduction in Geometry (ADG 2000) (2000)
Gonnet, G.H.: New results for random determination of equivalence of expressions. In: SYMSAC 1986: Proceedings of the fifth ACM symposium on Symbolic and algebraic computation, pp. 127–131. ACM Press, New York (1986)
Hong, J.: Proving by example and gap theorem. In: I.C.S. (ed.): 27th symposium on Foundations of computer science, Toronto, Ontario, 107–116 (in press,1986)
Kortenkamp, U.: Foundations of Dynamic Geometry. PhD thesis, ETH Zurich, Institut fur Theoretische Informatik (1999)
Foufou, S., Jurzak, J.P., Michelucci, D.: Numerical decomposition of geometric constraints. In: Proc. ACM Conference on Solid and Physical Modeling, pp. 143–151 (2005)
Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete and Computational Geometry 4, 387–421 (1989)
Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete and Computational Geometry 2, 195–222 (1987)
Laumond, J.P. (ed.): Robot Motion Planning and Control. Lecture Notes in Control and Information Science. Springer, Heidelberg (1998)
Michelucci, D., Neveu, M.: Shortest circuits with given homotopy in a constellation. In: 9th ACM Symp. Solid Modeling and Applications, pp. 297–302 (2004)
Choi, J., Sellen, J., Yap, C.: Approximate Euclidean shortest path in 3-space. Int’l. J. Computational Geometry and Applications 271–295 (1997); Journal special issue. Also in 10th ACM Symposium on Computational Geometry (1994)
Glassner, A.: An Introduction to Ray Tracing. In: Glassner, A. (ed.), Academic Press, London (1989) ISBN 0-12-286160-4
Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann Publishers Inc., San Francisco (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Michelucci, D., Moreau, J.M., Foufou, S. (2008). Robustness and Randomness. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds) Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol 5045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85521-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-85521-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85520-0
Online ISBN: 978-3-540-85521-7
eBook Packages: Computer ScienceComputer Science (R0)