Abstract
Epilepsy is one of the most frequent neurological disorders. The main method used in epilepsy diagnosis is electroencephalogram (EEG) signal analysis. However this method requires a time-consuming analysis when made manually by an expert due to the length of EEG recordings. This paper proposes an automatic classification system for epilepsy based on neural networks and EEG signals. The neural networks use 14 features (extracted from EEG) in order to classify the brain state into one of four possible epileptic behaviors: inter-ictal, pre-ictal, ictal and pos-ictal. Experiments were made in a (i) single patient (ii) different patients and (ii) multiple patients, using two datasets. The classification accuracies of 6 types of neural networks architectures are compared. We concluded that with the 14 features and using the data of a single patient results in a classification accuracy of 99%, while using a network trained for multiple patients an accuracy of 98% is achieved.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Srinivasan, V., Eswaran, C., Sriraam, N.: Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions On Information Technology In Biomedicine 11(3), 288–295 (2007)
Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering 54(7), 1545–1551 (2007)
Subasi, A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)
Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130, 314–333 (2007)
Freiburger Zentrum fur Datenanalyse und Mollbildung: The freiburg seizure prediction project abase, https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-dat
Leitão, B., Dourado, A., Vieira, M., Sales, F.: Computational system for the prediction of epileptic seizures through multi-sensorial information analysis. Technical report, Department of Informatics Engineering, University of Coimbra (September 2007)
Winterhalder, M., Schelter, B., Maiwald, T., Brandt, A., Schad, A., Schulze-Bonhage, A., Timmer, J.: Spatio-temporal patient-individual assessment of synchronization changes for epileptic seizure prediction. Clinical Neurophysiology 117, 2399–2413 (2006)
Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtsevanos, G.: Epileptic seizures may begin hours in advance of clinical onset: A report of five patients. Neuron. 30(1), 51–64 (2001)
Merkwirth, C., Parlitz, U., Wedekind, I., Lauterborn, W.: Tstool user manual, version 1.11 (2001), http://www.dpi.physik.uni-goettingen.de/tstool/HTML/index.html
Demuth, H., Beale, M., Hagan, M.: Neural network toolbox 6 user’s guide. The MathWorks (2008)
Chen, S., Cowan, C., Grant, P.M.: Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2(2), 302–309 (1991)
Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design. PWS Publishing Company (1996)
Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)
Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.: Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing 37(3), 328–339 (1989)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Costa, R.P., Oliveira, P., Rodrigues, G., Leitão, B., Dourado, A. (2008). Epileptic Seizure Classification Using Neural Networks with 14 Features. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-540-85565-1_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85564-4
Online ISBN: 978-3-540-85565-1
eBook Packages: Computer ScienceComputer Science (R0)