Abstract
t-Closeness is a privacy model recently defined for data anonymization. A data set is said to satisfy t-closeness if, for each group of records sharing a combination of key attributes, the distance between the distribution of a confidential attribute in the group and the distribution of the attribute in the data is no more than a threshold t. We state here the t-closeness property in terms of information theory and then use the tools of that theory to show that t-closeness can be achieved by the PRAM masking method in the discrete case and by a form of noise addition in the general case.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census records. Journal of Official Statistics 2(3), 329–336 (1986)
Samarati, P.: Protecting respondents identities in microdata release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, SRI International (1998)
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proc. IEEE Int. Conf. Data Eng (ICDE), Istanbul, Turkey, April 2007, pp. 106–115 (2007)
Gouweleeuw, J.M., Kooiman, P., Willenborg, L.C.R.J., DeWolf, P.P.: Post randomisation for statistical disclosure control: Theory and implementation, Research paper no. 9731 (Voorburg: Statistics Netherlands) (1997)
de Wolf, P.P.: Risk, utility and PRAM. In: Domingo-Ferrer, J., Franconi, L. (eds.) PSD 2006. LNCS, vol. 4302. Springer, Heidelberg (2006)
Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogenerous k-anonymity through microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)
Truta, T.M., Vinay, B.: Privacy protection: p-sensitive k-anonymity property. In: 2nd International Workshop on Privacy Data Management PDM 2006, Atlanta, GA, p. 94. IEEE Computer Society, Los Alamitos (2006)
Machanavajjhala, A., Gehrke, J., Kiefer, D., Venkitasubramanian, M.: L-diversity: privacy beyond k-anonymity. In: Proceedings of the IEEE ICDE 2006 (2006)
Domingo-Ferrer, J., Torra, V.: A critique of k-anonymity and some of its enhancements. In: Proceedings of ARES/PSAI 2008, pp. 990–993. IEEE Computer Society, Los Alamitos (2008)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
Kooiman, P.L., Willenborg, L., Gouweleeuw, J.: PRAM: A method for disclosure limitation of microdata. Research Rep. 9705, Statistics Netherlands, Voorburg, NL (1998)
de Waal, T., Willenborg, L.: Information loss through global recoding and local suppression. Netherlands Official Stat. 14, 17–20 (1999)
Willenborg, L., de Waal, T.: Elements of Statistical Disclosure Control. Springer, New York (2001)
Rebollo-Monedero, D., Forné, J.: An information-theoretic formulation of the privacy-distortion tradeoff. Research rep., Tech. Univ. of Catalonia (UPC) (June 2008)
Shannon, C.E.: Coding theorems for a discrete source with a fidelity criterion. IRE Nat. Conv. Rec. 7(4), 142–163 (1959)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rebollo-Monedero, D., Forné, J., Domingo-Ferrer, J. (2008). From t-Closeness to PRAM and Noise Addition Via Information Theory. In: Domingo-Ferrer, J., Saygın, Y. (eds) Privacy in Statistical Databases. PSD 2008. Lecture Notes in Computer Science, vol 5262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87471-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-87471-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87470-6
Online ISBN: 978-3-540-87471-3
eBook Packages: Computer ScienceComputer Science (R0)