Abstract
Artificial neural networks hold the established position of efficient classifiers used in decision support systems, yet to be efficient an ANN-based classifier requires careful selection of features. The excessive number of conditional attributes is not a guarantee of high classification accuracy, it means gathering and storing more data, and increasing the size of the network. Also the implementation of the trained network can become complex and the classification process takes more time. This line of reasoning leads to conclusion that the number of features should be reduced as far as possible without diminishing the power of the classifier. The paper presents investigations on attribute reduction process performed by exploiting the concept of reducts from the rough set theory and employed within stylometric analysis of literary texts that belongs with automatic categorisation tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cyran, K.A., MrĂłzek, A.: Rough sets in hybrid methods for pattern recognition. International Journal of Intelligent Systems 16, 149â168 (2001)
Cyran, K.A., StaĆczyk, U.: Indiscernibility relation for continuous attributes: application in image recognition. In: Kryszkiewicz, M., Peters, J.F., RybiĆski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 726â735. Springer, Heidelberg (2007)
Doumpos, M., Salappa, A.: Feature selection algorithms in classification problems: an experimental evaluation. WSEAS Transactions on Information Science & Applications 2(2), 77â82 (2005)
Matthews, R.A.J., Merriam, T.V.N.: Distinguishing literary styles using neural networks. In: Fiesler, E., Beale, R. (eds.) Handbook of neural computation, pp. G8.1.1â6. Oxford University Press, Oxford (1997)
Moshkow, M.J., Skowron, A., Suraj, Z.: On covering attribute sets by reducts. In: Kryszkiewicz, M., Peters, J.F., RybiĆski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 175â180. Springer, Heidelberg (2007)
Pawlak, Z.: Rough set rudiments. Tech. rep., Institute of Computer Science Report, Warsaw University of Technology, Warsaw, Poland (1996)
Peng, R.D., Hengartner, H.: Quantitative analysis of literary styles. The American Statistician 56(3), 15â38 (2002)
Shen, Q.: Rough feature selection for intelligent classifiers. In: Peters, J.F., Skowron, A., Marek, V.W., OrĆowska, E., SĆowiĆski, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 244â255. Springer, Heidelberg (2006)
SĆowiĆski, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., RybiĆski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5â11. Springer, Heidelberg (2007)
Smolinski, T.G., Chenoweth, D.L., Zurada, J.M.: Application of rough sets and neural networks to forecasting university facility and administrative cost recovery. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 538â543. Springer, Heidelberg (2004)
StaĆczyk, U., Cyran, K.A.: On employing elements of rough set theory to stylometric analysis of literary texts. International Journal on Applied Mathematics and Informatics 1(2), 159â166 (2007)
Stefanowski, J.: On combined classifiers, rule induction and rough sets. In: Peters, J.F., Skowron, A., DĂŒntsch, I., GrzymaĆa-Busse, J.W., OrĆowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 329â350. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
StaĆczyk, U. (2009). Relative Reduct-Based Selection of Features for ANN Classifier. In: Cyran, K.A., Kozielski, S., Peters, J.F., StaĆczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-00563-3_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00562-6
Online ISBN: 978-3-642-00563-3
eBook Packages: EngineeringEngineering (R0)