Skip to main content

Understanding the Potential Impact of Multiple Robots in Odor Source Localization

  • Chapter
Distributed Autonomous Robotic Systems 8

Abstract

We investigate the performance of three bio-inspired odor source localization algorithms used in non-cooperating multi-robot systems. Our performance metric is the distance overhead of the first robot to reach the source, which is a good measure for the speed of an odor source localization algorithm. Using the performance distribution of single-robot experiments, we calculate an ideal performance for multi-robot teams. We carry out simulations in a realistic robotic simulator and provide quantitative evidence of the differences between ideal and realistic performances of a given algorithm. A closer analysis of the results show that these differences are mainly due to physical interference among robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balkovsky, E., Shraiman, B.I.: Olfactory search at high reynolds number. PNAS 99(20), 12589–12593 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berlanger, J.H., Willis, M.A.: Adaptive control of odor-guided locomotion: behavioral flexibility as an antidote to environmental unpredictability. Adaptive Behavior 4(3-4), 217–253 (1996)

    Article  Google Scholar 

  3. Farrell, J.A., Murlis, J., Long, X., Li, W., Cardé, R.T.: Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes. Environmental Fluid Mechanics 2, 143–169 (2002)

    Article  Google Scholar 

  4. Ferri, G., Caselli, E., Mattoli, V., Mondini, A., Mazzolai, B., Dario, P.: A biologically-inspired algorithm implemented on a new highly flexible multi-agent platform for gas source localization. In: Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB 2006) (February 2006)

    Google Scholar 

  5. Gage, D.W.: Many-robot MCM search systems. In: Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium, vol. 9, pp. 56–64 (Appril 1995)

    Google Scholar 

  6. Hayes, A.T., Martinoli, A., Goodman, R.M.: Distributed odor source localization. IEEE Sensors Journal 2(3), 260–271 (2002)

    Article  Google Scholar 

  7. Hayes, A.T., Martinoli, A., Goodman, R.M.: Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica 21, 427–441 (2003)

    Article  Google Scholar 

  8. Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J.: Plume-tracking robots: A new application of chemical sensors. Biological Bulletin (200), 222–226 (2001)

    Google Scholar 

  9. Jatmiko, W., Sekiyama, K., Fukuda, T.: A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment. IEEE Computational Intelligence Magazine, 37–51 (May 2007)

    Google Scholar 

  10. Kuenen, L.P.S., Rowe, H.C.: Cowpea weevil flights to a point source of female sex pheromone: analyses of flight tracks at three wind speeds. Physiological Entomology 31(2), 103 (2006)

    Article  Google Scholar 

  11. Li, W., Farrell, J.A., Cardé, R.T.: Tracking of fluid-advected odor plumes: Strategies inspired by insect orientation to pheromone. Adaptive Behavior 9(3-4), 143–170 (2001)

    Article  Google Scholar 

  12. Li, W., Farrell, J.A., Pang, S., Arrieta, R.M.: Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Transactions on Robotics 22(2), 292–307 (2006)

    Article  Google Scholar 

  13. Lilienthal, A.J., Reiman, D., Zell, A.: Gas source tracing with a mobile robot using an adapted moth strategy. In: Autonome Mobile Systeme (AMS), Fachgespräch, GDI, vol. 18, pp. 150–160 (December 2003)

    Google Scholar 

  14. Lochmatter, T., Martinoli, A.: Simulation experiments with bio-inspired algorithms for odor source localization in laminar wind flow. In: Proceedings of the The Seventh International Conference on Machine Learning and Applications (ICMLA 2008). IEEE, Los Alamitos (2008)

    Google Scholar 

  15. Lochmatter, T., Martinoli, A.: Tracking odor plumes in a laminar wind field with bio-inspired algorithms. In: Proceedings of the 11th International Symposium on Experimental Robotics 2008 (ISER 2008). Springer Tracts in Advanced Robotics (2010), Athens, Greece (July 2008) (to appear)

    Google Scholar 

  16. Lochmatter, T., Raemy, X., Matthey, L., Indra, S., Martinoli, A.: A comparison of casting and spiraling algorithms for odor source localization in laminar flow. In: Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA 2008), pp. 1138–1143 (May 2008)

    Google Scholar 

  17. Long, M., Gage, A., Murphy, R., Valavanis, K.: Application of the distributed field robot architecture to a simulated demining task. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 3193–3200 (April 2005)

    Google Scholar 

  18. Marques, L., Nunes, U., de Almeida, A.T.: Particle swarm-based olfactory guided search. Autonomous Robots 20(3), 277–287 (2006)

    Article  Google Scholar 

  19. Michel, O.: Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

    Google Scholar 

  20. Russell, R.A.: Odour Detection by Mobile Robots. World Scientific Series in Robotics and Intelligent Systems, vol. 22. World Scientific Publishing Company, Singapore (1999)

    MATH  Google Scholar 

  21. Settles, G.S.: Sniffers: Fluid-dynamic sampling for olfactory trace detection in nature and homeland security—the 2004 freeman scholar lecture. Journal of Fluids Engineering. Transactions of the ASME 127, 189–218 (2005)

    Article  Google Scholar 

  22. Vergassola, M., Villermaux, E., Shraiman, B.I.: ‘Infotaxis’ as a strategy for searching without gradients. Nature 445, 406–409 (2007)

    Article  Google Scholar 

  23. Webb, B., Harrison, R.R., Willis, M.A.: Sensorimotor control of navigation in arthropod and artificial systems. Arthropod Structure and Development 33, 301–329 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lochmatter, T., Martinoli, A. (2009). Understanding the Potential Impact of Multiple Robots in Odor Source Localization. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds) Distributed Autonomous Robotic Systems 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00644-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00644-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00643-2

  • Online ISBN: 978-3-642-00644-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy