Abstract
We present a new algorithm of mining sequential patterns in data stream. In recent years data stream emerges as a new data type in many applications. When processing data stream, the memory is fixed, new stream elements flow continuously. The stream data can not be paused or completely stored. We develop a LSP-tree data structure to store the discovered sequential patterns. The experiment result shows that our proposal is able to mine sequential patterns from stream data with rather low price.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proceedings of the Eleventh International Conference on Data Engineering, pp. 3–14. IEEE Computer Society Press, Los Alamitos (1995)
Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)
Masseglia, F., Cathala, F., Poncelet, P.: The PSP Approach for Mining Sequential Patterns. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 176–184. Springer, Heidelberg (1998)
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H.: Prefixspan: Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth. In: Proc. of the 17th Intional Conf. on Data Engineering (ICDE 2001), pp. 215–226 (2001)
Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate Generation. In: Proc. 2000 ACM-SiGMOD Int’l. Conf. Management of Data (SIGMOD 2000), pp. 1–12 (2000)
Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q.: FreeSpan: FrequentPattern-Projected Sequential Pattern Mining. In: Proc. 2000 Int. Conf. Knowledge Discovery and Data Mining (KDD 2000), Boston, MA, pp. 355–359 (2000)
Zaki, M.J.: Spade: An Efficient Algorithm for Mining Frequents Sequences. Machine Learning 42, 31–60 (2001)
Ayres, J., Gehrke, J., Yiu, T., Flannick, J.: Sequential PAttern Mining using A Bitmap Representation. In: SIGKDD 2001, Edmonton, Alberta, Canada (2001)
Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In: Next Generation Data Mining. AAAI/MIT (2003)
Arasu, A., Manku, G.S.: Approximate Counts and Quantiles over Sliding Windows. In: Proc. ACM Symp., Principles of Database Systems, Paris, France, pp. 286–296 (2004)
Karp, R.M., Shenker, S.: A Simple Algorithm for Finding Frequent Elements in Streams and Bags. In: Proc. of the ACM Trans. on Database Systems, pp. 51–55 (2003)
Agarwal, R.C., Aggarwal, C.C., Prasad, V.V.V.: A Tree Projection Algorithm for Generation of Frequent Itemsets. In: Proc. of Parallel and Distributed Computing, Special Issue on High Performance Data Mining, pp. 350–371 (2000)
Almaden Research Center: Synthetic Data Generation, http://www.almaden.ibm.com/software/projects/iis/hdb/Projects/data_mining/datasets/syndata.html#classSynData
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huang, Q., Ouyang, W. (2009). Mining Sequential Patterns in Data Stream. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_98
Download citation
DOI: https://doi.org/10.1007/978-3-642-01510-6_98
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01509-0
Online ISBN: 978-3-642-01510-6
eBook Packages: Computer ScienceComputer Science (R0)