Skip to main content

Efficient Provable Secure ID-Based Directed Signature Scheme without Random Oracle

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5553))

Included in the following conference series:

  • 2359 Accesses

Abstract

As a special signature, a directed signature is a type of signature with verification ability which is restricted. In a directed signature scheme, a designated verifier can exclusively verify the validity of a signature. If necessary, the designated verifier or the signer can prove the correction of a signature to a third party. Directed signature schemes are suitable for applications such as bill of tax and bill of health. In this paper, an ID-based directed signature scheme without random oracle is proposed by combining ID-based cryptology with Waters signature. We also give the syntax and security notion of ID-based directed signature without random oracle: unforgeability and invisiblity. Finally, we show that the proposed scheme is unforgeable under the computational Diffie-Hellman assumption, and invisible under the Decisional Bilinear Diffie-Hellman assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

    Google Scholar 

  2. Lu, R., Lin, X., Cao, Z., Shao, J., Liang, X.: New (t, n) threshold directed signature scheme with provable security. Information Sciences 178, 756–765 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lu, R., Zhen, F., Zhou, Y.: Threshold undeniable signature scheme based on conic. Applied mathematics and computation 162, 165–177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  5. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Lim, C.H., Lee, P.J.: Modified Maurer-Yacobi’s scheme and Its application. In: Advances in Cryptology-ACISP 1992. LNCS, vol. 718, pp. 308–323. Springer, Heidelberg (1992)

    Google Scholar 

  7. Laguillaumie, F., Paillier, P., Vergnaud, D.: Universally covertible directed signatures. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 682–701. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the First Annual Conference on Computer and Commmunications Security, pp. 62–73. ACM Press, New York (1993)

    Google Scholar 

  9. Sunder, L., Manoj, K.: A Directed Threshold-Signature Scheme, http://arxiv.org/ftp/cs/papers/0411/0411005.pdf

  10. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  13. Bellare, M., Neven, G.: Identity-based Multi-signatures from RSA. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 145–162. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Libert, B., Quisquater, J.J.: Identity based undeniable signatures. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Waters, B.: Efficient Identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Boneh, D., Lynn, B., Shacham, H.: Short signture from the Weil pairing. Journal of Cryptology 17, 297–319 (2004)

    Article  MATH  Google Scholar 

  17. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme scure against adaptively chosen message attacks. SIAM Journal on Computing 17, 281–308 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Yang, Y., Niu, X. (2009). Efficient Provable Secure ID-Based Directed Signature Scheme without Random Oracle. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5553. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01513-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01513-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01512-0

  • Online ISBN: 978-3-642-01513-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy