Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Included in the following conference series:

  • 1940 Accesses

Abstract

In this paper we present an ensemble based translator which combines a simple rule and the connectionist translator RECONTRA. One of the problems of RECONTRA is the growing size of the networks as the tasks to be translated increase in size and complexity. A possibility to reduce this problem and increase the results is the use of ensembles. A simple rule (the presence of the symbol ‘¿’ in the input sentence) which allows separating the task in two parts that can be approached separately and, during the test phase allows integrating the results is employed.

Partially supported by the Generalitat Valenciana Project number GV/2007/105.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Koncar, N., Guthrie, G.: A Natural Language Translation Neural Network. In: Procs. of the Int. Conf. on New Methods in Language Processing, Manchester, UK, pp. 71–77 (1994)

    Google Scholar 

  2. Waibel, A., Jain, A.N., McNair, A.E., Saito, H., Hauptmann, A.G., Tebelskis, J.: JANUS: A Speech-to-Speech Translation System using Connectionist and Symbolic Processing Strategies. In: Procs. of the International Conference on Acustic, Speech and Signal Processing, pp. 793–796 (1991)

    Google Scholar 

  3. Castaño, M.A.: Redes Neuronales Recurrentes para Inferencia Gramatical y Traducción Automática. Ph.D. dissertation, Universidad Politécnica de Valencia, Spain (1998)

    Google Scholar 

  4. Casañ, G.A., Castaño, M.A.: Automatic Word Codification for the RECONTRA Connectionist Translator. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 168–175. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Casañ, G.A., Castaño, M.A.: Tuning word codifications for the RECONTRA translator. In: Borajo, D., Castillo, L., Corchado, J.M. (eds.) Actas XII Conferencia de la Asociación Española para la Inteligencia Artificial, Universidad de Salamanca, Salamanca, Spain, vol. 2, pp. 351–354 (2007)

    Google Scholar 

  6. Kuncheva, L.I.: Combining Pattern Classifiers. John Wiley & Sons, Inc., Chichester (2004)

    Book  MATH  Google Scholar 

  7. Zhou, Z.-H., et al.: Ensembling Neural Networks: Many Could Be Better Than All. A I 137(1-2), 239–263 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Elman, J.L.: Finding Structure in Time. Cognitive Science 2(4), 279–311 (1990)

    Google Scholar 

  9. Casañ, G.A., Castaño, M.A.: A connectionist automatic encoder and translator for natural languages. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds.) International Symposium on Distributed Computing and Artificial Intelligence, DCAI 2008. ASC, vol. 50, pp. 415–423. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Casañ, G.A., Castaño, M.A.: An improved connectionist translator between natural languages. In: Geffner, H., Prada, R., Machado Alexandre, I., David, N. (eds.) IBERAMIA 2008. LNCS (LNAI), vol. 5290, pp. 282–291. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Rumelhart, D.E., Hinton, G., Williams, R.: Learning Sequential Structure in Simple Re-current Networks. In: Rumelhart, D.E., McClelland, J.L., The PDP Research Group (eds.) Parallel distributed processing: Experiments in the microstructure of cognition, vol. 1. MIT Press, Cambridge (1981)

    Google Scholar 

  12. Marzal, A., Vidal, E.: Computation of Normalized Edit Distance and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 9, 15 (1993)

    Google Scholar 

  13. Amengual, J.C., Castaño, M.A., Castellanos, A., Llorens, D., Marzal, A., Prat, A., Vilar, J.M., Benedí, J.M., Casacuberta, F., Pastor, M., Vidal, E.: The Eutrans-I Spoken Language System. In: Machine Translation, vol. 15, pp. 75–102. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  14. Prat, F., Casacuberta, F., Castro, M.J.: Machine Translation with Grammar Association: Combining Neural Networks and Finite-State Models. In: Procs. The Second Workshop on Natural Language Processing and Neural Networks, Tokio, Japan, pp. 53–61 (2001)

    Google Scholar 

  15. Zell, A., et al.: SNNS: Stuttgart Neural Network Simulator. User manual, Version 4.1. Technical Report no. 6195, Institute for Parallel and Distributed High Performance Systems, University of Stuttgart, Germany (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casañ, G.A., Castaño, M.A. (2009). An Ensemble Based Translator for Natural Languages. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy