Skip to main content

A Support Vector Machine with Forgetting Factor and Its Statistical Properties

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

  • 2184 Accesses

Abstract

In order to make a support vector machine applicable to time-varying problems, a forgetting factor is introduced to its cost function, in the same way as the RLS algorithm for adaptive filters. The idea of the forgetting factor is simple but it is shown to drastically change the performance of SVMs by deriving the average generalization error in a simple case where input space is one-dimensional. The average generalization error does not converge to zero, differently from the SVM in batch or online. We confirmed our results by computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  2. Schölkopf, B., Burges, C., Smola, A.J.: Advances in Kernel Methods: Support Vector Learning. Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  3. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Smola, A.J., Bartlett, P.L., Schölkopf, B., Schuurmans, D. (eds.): Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector machines. In: Proc. ICML, pp. 487–494 (2000)

    Google Scholar 

  6. Liu, F., Zhang, T., Zhang, R.: Modified kernel RLS-SVM based multiuser detection over multipath channels. IEICE Trans. Fundamentals E86-A(8), 1979–1984 (2003)

    Google Scholar 

  7. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  8. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Computation 12(5), 1207–1245 (2000)

    Article  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  10. Ikeda, K., Aoishi, T.: An asymptotic statistical analysis of support vector machines with soft margins. Neural Networks 18(3), 251–259 (2005)

    Article  MATH  Google Scholar 

  11. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. In: Proc. ICML, pp. 57–64 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Funaya, H., Nomura, Y., Ikeda, K. (2009). A Support Vector Machine with Forgetting Factor and Its Statistical Properties. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_113

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_113

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy