Skip to main content

Improved Parameter Tuning Algorithms for Fuzzy Classifiers

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

Abstract

We propose two methods for tuning membership functions of a fuzzy classifier by the support-vector-machine (SVM) like training. For each class, we define a membership function in the feature space. In the first method, we tune the slopes of the membership functions so that the margin between classes is maximized. This method is similar to a linear all-at-once SVM. We call this AAO tuning. In the second method, for each class the membership function is tuned so that the margin between the class and the remaining classes are maximized. This method is similar to a linear one-against-all SVM. This is called OAA tuning. According to the computer experiment, the kernel-discriminant-analysis (KDA) based fuzzy classifiers tuned by AAO tuning and by OAA tuning and SVM show comparable classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuncheva, L.I.: Fuzzy Classifier Design. Physica-Verlag (2000)

    Google Scholar 

  2. Fullér, R.: Introduction to Neuro-Fuzzy Systems. Physica-Verlag (2000)

    Google Scholar 

  3. Abe, S.: Pattern Classification: Neuro-Fuzzy Methods and Their Comparison. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  4. Lin, C.-T., Juang, C.-F.: An adaptive neural fuzzy filter and its applications. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics 27(4), 635–656 (1997)

    Article  Google Scholar 

  5. Kim, J., Kasabov, N.: HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems. Neural Networks 12(9), 1301–1319 (1999)

    Article  Google Scholar 

  6. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics 29(5), 601–618 (1999)

    Article  Google Scholar 

  7. Abe, S., Thawonmas, R.: A fuzzy classifier with ellipsoidal regions. IEEE Trans. Fuzzy Systems 5(3), 358–368 (1997)

    Article  Google Scholar 

  8. Kaieda, K., Abe, S.: KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions. International Journal of Approximate Reasoning 37(3), 145–253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hosokawa, R., Abe, S.: Fuzzy classifiers based on kernel discriminant analysis. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 180–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Abe, S.: Support Vector Machines for Pattern Classification. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  11. Torii, Y., Abe, S.: Decomposition techniques for training linear programming support vector machines. Neurocomputing (in press)

    Google Scholar 

  12. Intelligent Data Analysis Group, http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morikawa, K., Abe, S. (2009). Improved Parameter Tuning Algorithms for Fuzzy Classifiers. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy