Skip to main content

Robust Detection of Medial-Axis by Onset Synchronization of Border-Ownership Selective Cells and Shape Reconstruction from Its Medial-Axis

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

Abstract

There is little understanding on representation and reconstruction of object shape in the cortex. Physiological studies with macaque suggested that neurons in V1 respond to Medial-Axis (MA). We investigated whether (1) early visual areas could provide basis for MA representation, and (2) we could reconstruct the original shape from its MA, with a physiologically realistic computational model consisting of early- to intermediate-level visual areas. Assuming the synchronization of border-ownership selective cells at stimulus onset, our model was capable of detecting MA, indicating that early visual area could provide basis for MA representation. Furthermore, we propose a physiologically plausible reconstruction algorithm with the summation of distinct gaussians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hubel, D.H., Wiesel, T.N.: Receptive Fields and Functional Architecture of Monkey Striate Cortex. The Journal of Physiology 195, 215–243 (1968)

    Article  Google Scholar 

  2. Pasupathy, A., Connor, C.E.: Shape representation in Area V4: Position-Specific Tuning for Boundary Conformation. The Journal of Neurophysiology 86, 2505–2519 (2001)

    Google Scholar 

  3. Hegde, J., Van Essen, D.C.: A Comparative Study of Shape Representation in Macaque Visual Areas V2 and V4. Cerebral Cortex 17, 1100–1116 (2006)

    Article  Google Scholar 

  4. Yamane, Y., Tsunoda, K., Matsumoto, M., Phillips, A.N., Tanifuji, M.: Representation of the Spatial Relationship among Object Parts by Neurons in Macaque Inferotemporal Cortex. The Journal of Neurophysiology 96, 3147–3156 (2006)

    Article  Google Scholar 

  5. Zhou, H., Friedman, H.S., Heydt, R.: Coding of Border Ownership in Monkey Visual Cortex. The Journal of Neuroscience 20, 6594–6611 (2000)

    Google Scholar 

  6. Lee, T.S., Mumford, D., Romero, R., Lamme, V.A.F.: The role of the primary visual cortex in higher level vision. Vision Research 38, 2429–2454 (1998)

    Article  Google Scholar 

  7. Samonds, J.M., Bonds, A.B.: Gamma Oscillation Maintains Stimulus Structure-Dependent Synchronization in Cat Visual Cortex. The Journal of Neurophysiology 93, 223–236 (2005)

    Article  Google Scholar 

  8. Zhou, Z., Bernard, M.R., Bonds, A.B.: Deconstruction of Spatial Integrity in Visual Stimulus Detected by Modulation of Synchronized Activity in Cat Visual Cortex. The Journal of Neuroscience 28, 3759–3768 (2008)

    Article  Google Scholar 

  9. Hatori, Y., Sakai, K.: Representation of Medial Axis from Synchronous Firing of Border-Ownership Selective Cells. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part I. LNCS, vol. 4984, pp. 18–26. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Sakai, K., Nishimura, H.: Surrounding Suppression and Facilitation in the determination of Border Ownership. The Journal of Cognitive Neuroscience 18, 562–579 (2006)

    Article  Google Scholar 

  11. NEURON, http://www.neuron.yale.edu/neuron/

  12. Koch, C. (ed.): Biophysics of Computation. Oxford University Press, Oxford (1999)

    Google Scholar 

  13. Archie, K.A., Mel, B.W.: A model for intradendritic computation of binocular disparity. Nature 3, 54–63 (2000)

    Google Scholar 

  14. Peters, A., Rockland, K.S. (eds.): CEREBRAL CORTEX. Primary Visual Cortex in Primates, vol. 10. Plenum Press (1994)

    Google Scholar 

  15. Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex. The Journal of Neuroscience 17, 2796–2808 (1997)

    Google Scholar 

  16. Rolls, E.T., Deco, G. (eds.): Computational Neuroscience of Vision. Oxford University Press, Oxford (2002)

    Google Scholar 

  17. Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z., Connor, C.E.: A neural code for three dimensional shape in macaque inferotemporal cortex. Nature Neuroscience 11, 1352–1360 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hatori, Y., Sakai, K. (2009). Robust Detection of Medial-Axis by Onset Synchronization of Border-Ownership Selective Cells and Shape Reconstruction from Its Medial-Axis. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy