Abstract
The increased competition faced by today’s companies can wield data mining tools to extract actionable knowledge and then use it as a weapon to outmaneuver competitors and boost revenue. Mining reclassification rules is a way to model actionable patterns directly from a given data set. The previous work on reclassification rule mining has shown that they are effective when variables are weakly correlated. However, when the data set is correlated, some redundant rules are in the result set. This problem becomes critical for discovering rules in correlated data which may have long frequent factor-sets. In this paper, we investigate properties of reclassification rules and offer a new method to discovery a set of non-redundant reclassification rules without information loss.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
He, Z., Xu, X., Deng, S.: Mining Cluster-Defining Actionable Rules. In: Proceedings of NDBC 2004 (2004)
He, Z., Xu, X., Deng, S., Ma, R.: Mining Action Rules From Scratch. Expert Systems with Applications 29(3), 691–699 (2005)
Im, S., Raś, Z.W.: Action Rule Extraction from a Decision Table: ARED. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS, vol. 4994, pp. 160–168. Springer, Heidelberg (2008)
Ling, C.X., Chen, T., Yang, Q., Chen, J.: Mining Optimal Actions for Intelligent CRM. In: 2002 IEEE International Conference on Data Mining, pp. 767–770. IEEE Computer Society, Maebashi City (2002)
Liu, B., Hsu, W., Ma, Y.: Identifying Non-actionable Association Rules. In: Proceedings of KDD 2001, San Francisco, CA, USA, pp. 329–334 (2001)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Itemsets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)
Pawlak, Z.: Information Systems - Theoretical Foundations. Information Systems Journal 6, 205–218 (1981)
Piatesky-Shapiro, G., Matheus, C.J.: The interestingness of deviations. In: Proceedings of AAA Workshop on Knowledge Discovery in Database, pp. 25–36. AAAI Press, Menlo Park (1994)
Raś, Z.W., Tsay, L.-S.: Discovering Extended Action-Rules (System DEAR). In: Proceedings of the IIS 2003 Symposium, Advances in Soft Computing, pp. 293–300. Springer, Zakopane (2003)
Raś, Z.W., Wieczorkowska, A.: Action-Rules: How to Increase Profit of a Company. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS, vol. 1910, pp. 587–592. Springer, Heidelberg (2000)
Tsay, L.-S., Raś, Z.W.: Action Rules Discovery: System DEAR2, Method and Experiments. Journal of Experimental and Theoretical Artificial Intelligence 17(1-2), 119–128 (2005)
Tsay, L.-S., Raś, Z.W.: E-Action Rules. In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Foundations of Data Mining. Studies in Computational Intelligence, pp. 261–272. Springer, Heidelberg (2007)
Tsay, L.-S., Raś, Z.W.: Discovering the Concise Set of Actionable Patterns. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 169–178. Springer, Heidelberg (2008)
Tsay, L.-S., Ras, Z.W., Im, S.: Reclassification Rules. In: IEEE/ICDM Workshop on Foundations of Data Mining (FDM 2008), pp. 619–627. IEEE Computer Society, Pisa (2008)
Wong, R.C.-W., Fu, A.W.-C.: ISM: Item Selection for Marketing with Cross-selling Considerations. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS, vol. 3056, pp. 431–440. Springer, Heidelberg (2004)
Yang, Q., Yin, J., Lin, C.X., Chen, T.: Postprocessing Decision Trees to Extract Actionable Knowledge. In: Proceedings of ICDM 2003, pp. 685–688. IEEE Computer Society, Florida (2003)
Zhang, H., Zhao, Y., Cao, L., Zhang, C.: Combined Association Rule Mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS, vol. 5012, pp. 1069–1074. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsay, LS., Im, S. (2009). Mining Non-redundant Reclassification Rules. In: Chien, BC., Hong, TP., Chen, SM., Ali, M. (eds) Next-Generation Applied Intelligence. IEA/AIE 2009. Lecture Notes in Computer Science(), vol 5579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02568-6_82
Download citation
DOI: https://doi.org/10.1007/978-3-642-02568-6_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02567-9
Online ISBN: 978-3-642-02568-6
eBook Packages: Computer ScienceComputer Science (R0)