Skip to main content

Mining Non-redundant Reclassification Rules

  • Conference paper
Next-Generation Applied Intelligence (IEA/AIE 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5579))

  • 1582 Accesses

Abstract

The increased competition faced by today’s companies can wield data mining tools to extract actionable knowledge and then use it as a weapon to outmaneuver competitors and boost revenue. Mining reclassification rules is a way to model actionable patterns directly from a given data set. The previous work on reclassification rule mining has shown that they are effective when variables are weakly correlated. However, when the data set is correlated, some redundant rules are in the result set. This problem becomes critical for discovering rules in correlated data which may have long frequent factor-sets. In this paper, we investigate properties of reclassification rules and offer a new method to discovery a set of non-redundant reclassification rules without information loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. He, Z., Xu, X., Deng, S.: Mining Cluster-Defining Actionable Rules. In: Proceedings of NDBC 2004 (2004)

    Google Scholar 

  2. He, Z., Xu, X., Deng, S., Ma, R.: Mining Action Rules From Scratch. Expert Systems with Applications 29(3), 691–699 (2005)

    Article  Google Scholar 

  3. Im, S., Raś, Z.W.: Action Rule Extraction from a Decision Table: ARED. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS, vol. 4994, pp. 160–168. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Ling, C.X., Chen, T., Yang, Q., Chen, J.: Mining Optimal Actions for Intelligent CRM. In: 2002 IEEE International Conference on Data Mining, pp. 767–770. IEEE Computer Society, Maebashi City (2002)

    Google Scholar 

  5. Liu, B., Hsu, W., Ma, Y.: Identifying Non-actionable Association Rules. In: Proceedings of KDD 2001, San Francisco, CA, USA, pp. 329–334 (2001)

    Google Scholar 

  6. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Itemsets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Pawlak, Z.: Information Systems - Theoretical Foundations. Information Systems Journal 6, 205–218 (1981)

    Article  MATH  Google Scholar 

  8. Piatesky-Shapiro, G., Matheus, C.J.: The interestingness of deviations. In: Proceedings of AAA Workshop on Knowledge Discovery in Database, pp. 25–36. AAAI Press, Menlo Park (1994)

    Google Scholar 

  9. Raś, Z.W., Tsay, L.-S.: Discovering Extended Action-Rules (System DEAR). In: Proceedings of the IIS 2003 Symposium, Advances in Soft Computing, pp. 293–300. Springer, Zakopane (2003)

    Google Scholar 

  10. Raś, Z.W., Wieczorkowska, A.: Action-Rules: How to Increase Profit of a Company. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS, vol. 1910, pp. 587–592. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Tsay, L.-S., Raś, Z.W.: Action Rules Discovery: System DEAR2, Method and Experiments. Journal of Experimental and Theoretical Artificial Intelligence 17(1-2), 119–128 (2005)

    Article  MATH  Google Scholar 

  12. Tsay, L.-S., Raś, Z.W.: E-Action Rules. In: Lin, T.Y., Xie, Y., Wasilewska, A., Liau, C.-J. (eds.) Foundations of Data Mining. Studies in Computational Intelligence, pp. 261–272. Springer, Heidelberg (2007)

    Google Scholar 

  13. Tsay, L.-S., Raś, Z.W.: Discovering the Concise Set of Actionable Patterns. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 169–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Tsay, L.-S., Ras, Z.W., Im, S.: Reclassification Rules. In: IEEE/ICDM Workshop on Foundations of Data Mining (FDM 2008), pp. 619–627. IEEE Computer Society, Pisa (2008)

    Chapter  Google Scholar 

  15. Wong, R.C.-W., Fu, A.W.-C.: ISM: Item Selection for Marketing with Cross-selling Considerations. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS, vol. 3056, pp. 431–440. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Yang, Q., Yin, J., Lin, C.X., Chen, T.: Postprocessing Decision Trees to Extract Actionable Knowledge. In: Proceedings of ICDM 2003, pp. 685–688. IEEE Computer Society, Florida (2003)

    Google Scholar 

  17. Zhang, H., Zhao, Y., Cao, L., Zhang, C.: Combined Association Rule Mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS, vol. 5012, pp. 1069–1074. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tsay, LS., Im, S. (2009). Mining Non-redundant Reclassification Rules. In: Chien, BC., Hong, TP., Chen, SM., Ali, M. (eds) Next-Generation Applied Intelligence. IEA/AIE 2009. Lecture Notes in Computer Science(), vol 5579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02568-6_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02568-6_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02567-9

  • Online ISBN: 978-3-642-02568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy