Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Included in the following conference series:

  • 1546 Accesses

Abstract

Generally, the minutiae sent to the final matching phase are extracted from the skeleton images. The accuracy of minutiae extraction depends on the quality of the skeleton image. This paper presents a novel approach of fully reconstructing the fingerprint images besides using the traditional procedures of fingerprint enhancement. The reconstruction would not only improve the quality of the skeleton image but also increase the accuracy of minutiae extraction and improve the recognition results. The proposed algorithm deals with the three quality degrading problems in skeleton images; ridges not being strictly continuous, parallel ridges not being well separated, and finally the ridges not being smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Pankanti, S.: Beyond Fingerprinting: Is Biometrics the Best Bet for Fighting Identity Theft. Scientific American Magazine, 4 (September 2008)

    Google Scholar 

  2. International Biometric Group: Biometrics Market and Industry Report 2009-2014 (October 2008)

    Google Scholar 

  3. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, New York (2003)

    MATH  Google Scholar 

  4. Hong, L., Wang, Y., Jain, A.K.: Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(8), 777–789 (1998)

    Article  Google Scholar 

  5. Akram, M.U., Tariq, A., Khan, S.A., Nasir, S.: Fingerprint image: pre- and post-processing. International Journal of Biometrics 1(1), 63–80 (2008)

    Article  Google Scholar 

  6. Wang, W., Li, J., Huang, F., Feng, H.: Design and implementation of Log-Gabor filter in fingerprint image enhancement. Pattern Recognition Letters 29(3), 301–308 (2008)

    Article  MATH  Google Scholar 

  7. Porwik, P., Więcław, Ł.: A new efficient method of fingerprint image enhancement. International Journal of Biometrics 1(1), 36–46 (2008)

    Article  Google Scholar 

  8. Areekul, V., Watchareeruetai, U., Tantaratana, S.: Fast separable gabor filter for fingerprint enhancement. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 403–409. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Chikkerur, S., Cartwright, A.N., Govindaraju, V.: Fingerprint Enhancement Using STFT Analysis. Pattern Recognition 40, 198–211 (2007)

    Article  MATH  Google Scholar 

  10. Jirachawang, S., Areekul, V.: Fingerprint Enhancement Based on Discrete Cosine Transform. In: International Conference on Bioinformatics, pp. 96–105 (2007)

    Google Scholar 

  11. Rahmes, M., Allen, J.D., Elharti, A., Tenali, G.B.: Fingerprint Reconstruction Method Using Partial Differential Equation and Exemplar-Based Inpainting Methods. In: Biometrics Symposium, September 11-13, pp. 1–6 (2007)

    Google Scholar 

  12. Oliveira, M.A.D., Leite, N.J.: Reconnection of Fingerprint Ridges Based on Morphological Operators and Multiscale Directional Information. In: Proc. of XVII Brazilian Symposium on Computer Graphics and Image Processing, pp. 122–129 (2004)

    Google Scholar 

  13. Park, S., Smith, M.J.T., Lee, J.J.: Fingerprint enhancement based on directional filter bank. In: Proceedings of 2000 International Conference on Image Processing, vol. 10-13, pp. 793–796 (2000)

    Google Scholar 

  14. Feng, Z., Xiaoou, T.: Preprocessing and postprocessing for skeleton-based fingerprint minutiae extraction. Pattern Recognition 40(4), 1270–1281 (2007)

    Article  MATH  Google Scholar 

  15. Xiao, Q., Raafat, H.: Fingerprint image postprocessing: a combined statistical and structural approach. Pattern Recognition 24(10), 985–992 (1991)

    Article  Google Scholar 

  16. http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm

  17. Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies-A Comprehensive Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9), 879 (1992)

    Article  Google Scholar 

  18. Chikkerur, S., et al.: Systematic approach for feature extraction in Fingerprint Images. In: International Conference on Biometric Authentication (2004)

    Google Scholar 

  19. Second International Fingerprint Verification Competition (2002), http://bias.csr.unibo.it/fvc2002/

  20. Afsar, F.A.: Fingerprint based person identification and verification (2005), http://fayyazafsar.googlepages.com/Afsar-Thesis-2ud.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malik, R., Masood, A. (2009). Fingerprint Enhancement and Reconstruction. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy