Abstract
In this contribution knowledge-based image understanding is treated. The knowledge is coded declaratively in a production system. Applying this knowledge to a large set of primitives may lead to high computational efforts. A particular accumulating parsing scheme trades soundness for feasibility. Per default this utilizes a bottom-up control based on the quality assessment of the object instances. The point of this work is in the description of top-down control rationales to accelerate the search dramatically. Top-down strategies are distinguished in two types: (i) Global control and (ii) localized focus of attention and inhibition methods. These are discussed and empirically compared using a particular landmark recognition system and representative aerial image data from GOOGLE-earth.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arens, M., Nagel, H.–H.: Quantitative Movement Prediction based on Qualitative Knowledge about Behavior. In: KI – Künstliche Intelligenz 2/2005, pp. 5–11 (2005)
Desolneux, A., Moisan, L., Morel, J.–M.: From Gestalt Theory to Image Analysis. Springer, Berlin (2008)
Dickmanns, E.: Expectation-based Dynamic Scene Understanding. In: Blake, A., Yuille, A. (eds.) Active Vision, pp. 303–335. MIT Press, MA (1993)
Hotz, L., Neumann, B., Terzic, K.: High-Level Expectations for Low-Level Image Processing. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 87–94. Springer, Heidelberg (2008)
Kanade, T.: Model Representations and Control Structures in Image Understanding. In: Reddy, R. (ed.) Proc. 5th Int. Joint Conf. on Artificial Intelligence (IJCAI 1977), Cambridge, MA, USA, August 1977, pp. 1074–1082. William Kaufman, San Francisco (1977)
Lütjen, K.: BPI: Ein Blackboard-basiertes Produktionssystem für die automatische Bildauswertung. In: Hartmann, G. (ed.) Mustererkennung 1986, 8. DAGM–Symposium, Paderborn, September 30 – October 2. Informatik Fachberichte 125, pp. 164–168. Springer, Heidelberg (1986)
Marroitt, K., Meyer, B. (eds.): Visual Language Theory. Springer, Berlin (1998)
Matsuyama, T., Hwang, V.S.–S.: SIGMA a Knowledge-Based Aerial Image Understanding System. Plenum Press, New York (1990)
Michaelsen, E., Jäger, K.: A GOOGLE-Earth Based Test Bed for Structural Image-based UAV Navigation. In: FUSION 2009, Proc. on CD, Seattle, WA, USA, pp. 340–346 (2009) ISBN 978-0-9824438-0-4
Michaelsen, E., Doktorski, L., Arens, M.: Shortcuts in Production Systems – A way to include clustering in structural Pattern Recognition. In: Proc. of PRIA-9-2008, Nischnij Nowgorod, vol. 2, pp. 30–38 (2008) ISBN 978-5-902390-14-5
Michaelsen, E., Doktorski, L., Arens, M.: Making Structural Pattern Recognition Tractable by Local Inhibition. In: VISAPP 2009, Proc. on CD, Lisboa, Portugal, vol. 1, pp. 381–384 (2009) ISBN 978-989-8111-69-2
Niemann, H.: Pattern Analysis and Understanding. Springer, Berlin (1989)
Tenenbaum, J.M., Barrow, H.G.: Experiments in Interpretation Guided Segmentation. Artificial Intelligence Journal 8(3), 241–274 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Michaelsen, E., Arens, M., Doktorski, L. (2009). Interaction of Control and Knowledge in a Structural Recognition System. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-04617-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04616-2
Online ISBN: 978-3-642-04617-9
eBook Packages: Computer ScienceComputer Science (R0)