Skip to main content

Interaction of Control and Knowledge in a Structural Recognition System

  • Conference paper
KI 2009: Advances in Artificial Intelligence (KI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5803))

Included in the following conference series:

Abstract

In this contribution knowledge-based image understanding is treated. The knowledge is coded declaratively in a production system. Applying this knowledge to a large set of primitives may lead to high computational efforts. A particular accumulating parsing scheme trades soundness for feasibility. Per default this utilizes a bottom-up control based on the quality assessment of the object instances. The point of this work is in the description of top-down control rationales to accelerate the search dramatically. Top-down strategies are distinguished in two types: (i) Global control and (ii) localized focus of attention and inhibition methods. These are discussed and empirically compared using a particular landmark recognition system and representative aerial image data from GOOGLE-earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arens, M., Nagel, H.–H.: Quantitative Movement Prediction based on Qualitative Knowledge about Behavior. In: KI – Künstliche Intelligenz 2/2005, pp. 5–11 (2005)

    Google Scholar 

  2. Desolneux, A., Moisan, L., Morel, J.–M.: From Gestalt Theory to Image Analysis. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Dickmanns, E.: Expectation-based Dynamic Scene Understanding. In: Blake, A., Yuille, A. (eds.) Active Vision, pp. 303–335. MIT Press, MA (1993)

    Google Scholar 

  4. Hotz, L., Neumann, B., Terzic, K.: High-Level Expectations for Low-Level Image Processing. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 87–94. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Kanade, T.: Model Representations and Control Structures in Image Understanding. In: Reddy, R. (ed.) Proc. 5th Int. Joint Conf. on Artificial Intelligence (IJCAI 1977), Cambridge, MA, USA, August 1977, pp. 1074–1082. William Kaufman, San Francisco (1977)

    Google Scholar 

  6. Lütjen, K.: BPI: Ein Blackboard-basiertes Produktionssystem für die automatische Bildauswertung. In: Hartmann, G. (ed.) Mustererkennung 1986, 8. DAGM–Symposium, Paderborn, September 30 – October 2. Informatik Fachberichte 125, pp. 164–168. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  7. Marroitt, K., Meyer, B. (eds.): Visual Language Theory. Springer, Berlin (1998)

    Google Scholar 

  8. Matsuyama, T., Hwang, V.S.–S.: SIGMA a Knowledge-Based Aerial Image Understanding System. Plenum Press, New York (1990)

    Google Scholar 

  9. Michaelsen, E., Jäger, K.: A GOOGLE-Earth Based Test Bed for Structural Image-based UAV Navigation. In: FUSION 2009, Proc. on CD, Seattle, WA, USA, pp. 340–346 (2009) ISBN 978-0-9824438-0-4

    Google Scholar 

  10. Michaelsen, E., Doktorski, L., Arens, M.: Shortcuts in Production Systems – A way to include clustering in structural Pattern Recognition. In: Proc. of PRIA-9-2008, Nischnij Nowgorod, vol. 2, pp. 30–38 (2008) ISBN 978-5-902390-14-5

    Google Scholar 

  11. Michaelsen, E., Doktorski, L., Arens, M.: Making Structural Pattern Recognition Tractable by Local Inhibition. In: VISAPP 2009, Proc. on CD, Lisboa, Portugal, vol. 1, pp. 381–384 (2009) ISBN 978-989-8111-69-2

    Google Scholar 

  12. Niemann, H.: Pattern Analysis and Understanding. Springer, Berlin (1989)

    MATH  Google Scholar 

  13. Tenenbaum, J.M., Barrow, H.G.: Experiments in Interpretation Guided Segmentation. Artificial Intelligence Journal 8(3), 241–274 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Michaelsen, E., Arens, M., Doktorski, L. (2009). Interaction of Control and Knowledge in a Structural Recognition System. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04617-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04616-2

  • Online ISBN: 978-3-642-04617-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy