Abstract
This paper presents the overall system of a learning, selforganizing, and adaptive controller used to optimize the combustion process in a hard-coal fired power plant. The system itself identifies relevant channels from the available measurements, classical process data and flame image information, and selects the most suited ones to learn a control strategy based on observed data. Due to the shifting nature of the process, the ability to re-adapt the whole system automatically is essential. The operation in a real power plant demonstrates the impact of this intelligent control system with its ability to increase efficiency and to reduce emissions of greenhouse gases much better then any previous control system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Flynn, D. (ed.): Thermal power plant simulation and control. IEE London (2003)
Stephan, V., Debes, K., Gross, H.-M., Wintrich, F., Wintrich, H.: A New Control Scheme for Combustion Processes using Reinforcement Learning based on Neural Networks. International Journal on Computational Intelligence and Applications 1, 121–136 (2001)
Torkkola, K.: Feature Extraction by Non Parametric Mutual Information Maximization. Journal of Machine Learning Research 3, 1415–1438 (2003)
Principe, J., Xu, D., Fisher, J.: Information theoretic learning. In: Haykin, S. (ed.) Unsupervised Adaptive Filtering, pp. 265–319. Wiley, Chichester (2000)
Schaffernicht, E., Stephan, V., Gross, H.-M.: Adaptive Feature Transformation for Image Data from Non-stationary Processes. Int. Conf. on Artificial Neural Networks (ICANN) (to appear, 2009)
Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks 5, 537–550 (1994)
Ogunnaike, B.A., Ray, W.H.: Process Dynamics, Modeling and Control. Oxford University Press, Oxford (1994)
Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor Graphs and the Sum-Product Algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)
Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient non-linear control through neuroevolution. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 654–662. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schaffernicht, E., Stephan, V., Debes, K., Gross, HM. (2009). Machine Learning Techniques for Selforganizing Combustion Control. In: Mertsching, B., Hund, M., Aziz, Z. (eds) KI 2009: Advances in Artificial Intelligence. KI 2009. Lecture Notes in Computer Science(), vol 5803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04617-9_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-04617-9_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04616-2
Online ISBN: 978-3-642-04617-9
eBook Packages: Computer ScienceComputer Science (R0)