Skip to main content

Competition and Cooperation between Nodes in Delay Tolerant Networks with Two Hop Routing

  • Conference paper
Network Control and Optimization (NET-COOP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5894))

Included in the following conference series:

  • 581 Accesses

Abstract

This paper revisits the two-hop forwarding policy in delay tolerant networks (DTNs) and provides a rich study of their performance and optimization which includes (i) Derivation of closed form expressions for the main performance measures such as success delivery probability of a packet (or a message) within a given deadline. (ii) A study of competitive and cooperative operations of DTNs and derivation of the structure of optimal and of equilibrium policies. (iii) A study of the case in which the entity that is forwarded is a chunk rather than a whole message. For a message to be received successfully, all chunks of which it is composed have to arrive at the destination within the deadline. (iv) A study of the benefits of adding redundant chunks. (v) The convergence to the mean field limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Hanbali, A., Nain, P., Altman, E.: Performance of Ad Hoc Networks with Two-Hop Relay Routing and Limited Packet Lifetime. In: First International Conference on Performance Evaluation Methodologies and Tools (Valuetools), Pisa (2006)

    Google Scholar 

  2. Altman, E., Basar, T., De Pellegrini, F.: Optimal monotone forwarding policies in delay tolerant mobile Ad-Hoc networks. In: Inter-Perf 2008: Workshop on Interdisciplinary Systems Approach in Performance Evaluation and Design of Computer & Communication Systems, Athens, Greece (October 2008)

    Google Scholar 

  3. Altman, E., De Pellegrini, F.: Forward Correction and Fountain codes in Delay Tolerant Networks. In: IEEE Infocom, Rio de Janeiro, Brazil, April 19-25 (2009)

    Google Scholar 

  4. Altman, E., Neglia, G., De Pellegrini, F., Miorandi, D.: Decentralized Stochastic Control of Delay Tolerant Networks. In: IEEE Infocom, Rio de Janeiro, Brazil, April 19-25 (2009)

    Google Scholar 

  5. Erramilli, V., Chaintreau, A., Crovella, M., Diot, C.: Diversity of forwarding paths in pocket switched networks. In: Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, San Diego, California, USA, pp. 161–174 (2007)

    Google Scholar 

  6. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and its Applications. Mathematics in Science and Engineering, vol. 143. Academic Press, London (1979)

    MATH  Google Scholar 

  7. Luo, P., Huang, H., Shu, W., Li, M., Wu, M.-Y.: Performance Evaluation of Vehicular DTN Routing under Realistic Mobility Models. In: Wireless Communications and Networking Conference, WCNC 2008, March 31 - April 3, pp. 2206–2211 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Altman, E. (2009). Competition and Cooperation between Nodes in Delay Tolerant Networks with Two Hop Routing. In: Núñez-Queija, R., Resing, J. (eds) Network Control and Optimization. NET-COOP 2009. Lecture Notes in Computer Science, vol 5894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10406-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10406-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10405-3

  • Online ISBN: 978-3-642-10406-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy