Skip to main content

Combining Heuristics Backtracking and Genetic Algorithm to Solve the Container Loading Problem with Weight Distribution

  • Conference paper
Soft Computing Models in Industrial and Environmental Applications, 5th International Workshop (SOCO 2010)

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 73))

Abstract

We approach the container loading problem with maximization of the weight distribution. Our methodology consists of two phases. In the first phase, it applies heuristics based on integer linear programming to construct blocks building of small items. A backtracking algorithm chooses the best heuristics. The objective of this phase is to maximize the total volume of the packed boxes. In the second phase, we apply a genetic algorithm on found solution in previous phase in order to maximize its weight distribution. We use a well-known benchmark test to compare our results with other approaches, considering that our algorithm is not yet completely implemented. This paper also presents a case study of our implementation using some real data in a factory of stoves and refrigerators in Brazil. The obtained results are better than the found results by the factory’s system, in reduced time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)

    Google Scholar 

  2. Bischoff, E.E.: Three dimensional packing of items with limited load bearing strength. European Journal of Operational Research 168, 952–966 (2006)

    Article  MATH  Google Scholar 

  3. Bischoff, E.E., Janetz, F., Ratcliff, M.S.W.: Loading Pallets with Nonidentical Items. European Journal of Operational Research 84, 681–692 (1995)

    Article  MATH  Google Scholar 

  4. Bischoff, E.E., Ratcliff, M.S.W.: Issues in the Development of Approaches to Container Loading. Omega 23, 377–390 (1995)

    Article  Google Scholar 

  5. Bortfeldt, A., Gehring, H.: A Hybrid Genetic Algorithm for the Container Loading Problem. European Journal of Operational Research 131, 143–161 (2001)

    Article  MATH  Google Scholar 

  6. Bortfeldt, A., Gehring, H., Mack, D.: A Parallel Tabu Search Algorithm for Solving the Container Loading Problem. Parallel Computing 29, 641–662 (2002)

    Article  Google Scholar 

  7. Chen, C.S., Lee, S.M., Shen, Q.S.: An analytical model for the container loading problem. European Journal of Operations Research 80, 68–76 (1993)

    Article  Google Scholar 

  8. Davies, A.P., Bischoff, E.E.: Weight distribution considerations in container loading. European Journal of Operations Research 114, 509–527 (1999)

    Article  MATH  Google Scholar 

  9. Dyckhoff, H.: A typology of cutting and packing problems. European Journal of Operational Research 44, 145–159 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gehring, H., Bortfeldt, A.: A Genetic Algorithm for Solving the Container Loading Problem. Internat. Trans. Internat. Trans. in Operational Research 4, 401–418 (1997)

    Article  MATH  Google Scholar 

  11. Gehring, H., Bortfeldt, A.: A Parallel Genetic Algorithm for Solving the Container Loading Problem. International Transactions in Operational Research 9, 497–511 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gehring, H., Menschner, K., Meyer, M.: A computer-based heuristic for packing pooled shipment containers. European Journal of Operational Research 44, 277–288 (1990)

    Article  MATH  Google Scholar 

  13. George, J.A., Robinson, D.F.: A heuristic for packing boxes into a container. Computers and Operations Research 7, 147–156 (1980)

    Article  Google Scholar 

  14. Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorihtm for the container loading problem. International Transactions in Operations Research 11, 511–533 (2004)

    Article  MATH  Google Scholar 

  15. Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Operational Research 48, 256–267 (2000)

    MATH  MathSciNet  Google Scholar 

  16. Morabito, R., Arenales, M.: An and/or-graph approach to the container loading problem. International Transactions in Operational Research 1(1), 59–73 (1994)

    Article  MATH  Google Scholar 

  17. Nepomuceno, N., Pinheiro, P.R., Coelho, A.L.V.: Tackling the Container Loading Problem: A Hybrid Approach Based on Integer Linear Programming and Genetic Algorithms. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 154–165. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Pisinger, D.: Heuristc for the Container Loading Problem. European Journal of Operational Research 141, 382–392 (2000)

    Article  MathSciNet  Google Scholar 

  19. Pisinger, D.: Heuristics for the Container Loading Problem. European Journal of Operational Research 141, 143–153 (2002)

    Article  MathSciNet  Google Scholar 

  20. Wascher, G., Hausner, H., Schumann, H.: An improved typology of cutting and packing problems. European Journal of Operational Research 183(3), 1109–1130 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Araújo, L.J.P., Pinheiro, P. (2010). Combining Heuristics Backtracking and Genetic Algorithm to Solve the Container Loading Problem with Weight Distribution. In: Corchado, E., Novais, P., Analide, C., Sedano, J. (eds) Soft Computing Models in Industrial and Environmental Applications, 5th International Workshop (SOCO 2010). Advances in Intelligent and Soft Computing, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13161-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13161-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13160-8

  • Online ISBN: 978-3-642-13161-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy