Skip to main content

Stability and Bifurcation of a Three-Dimension Discrete Neural Network Model with Delay

  • Conference paper
Advances in Neural Networks - ISNN 2010 (ISNN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6063))

Included in the following conference series:

  • 1864 Accesses

Abstract

In this paper, we consider a three-dimension discrete neural network model with delay. The characteristic equation of the linearized system at the zero solution is a polynomial equation involving very high order terms. We derive some sufficient and necessary conditions on the asymptotic stability of the zero solution. In addition, it is found that there exist Hopf bifurcations when the parameter passes a sequence of critical values by using Extensional Jury Criterion. Finally, computer simulations are performed to support the theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guo, S., Tang, X., Li, H.: Stability and bifurcation in a discrete system of two neurons with delays. Nonlinear Analysis: Real World Applications 9, 1323–1335 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Zhang, C., Zheng, B.: Stability and bifurcation of a two-dimension discrete neuralnetwork model with multi-delays. Chaos, Solitons and Fractals 31, 1232–1242 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wei, J., Zhang, C.: Bifurcation analysis of a class of neural networks with delays. Nonlinear Analysis: Real World Applications 9, 2234–2252 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, C., Zheng, B.: Hopf bifurcation in numerical approximation of a n-dimension neural network model with multi-delays. Chaos, Solitons and Fractals 25, 129–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wei, J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physical D 130, 255–272 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zhang, C., Liu, M., Zheng, B.: Hopf bifurcation in numerical pproximation of a class delay differential equations. Applied Mathematics and Computation 146, 335–349 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wei, J., Zhang, C.: Stability analysis in a first-order complex differential equations with delay. Nonlinear Analysis 59, 657–671 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Zhao, H., Wang, L., Ma, C.: Hopf bifurcation and stability analysis on discrete-time Hopfield neural network with delay. Nonlinear Analysis: Real World Application 9, 103–113 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zheng, B., Liang, L., Zhang, C.: Extended Jury Criterion. Science in China Series A: Mathematics 39, 1239–1260 (2009)

    Google Scholar 

  10. Yuri, A.K.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    MATH  Google Scholar 

  11. Golubitsky, M., Stewart, I.N., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory. Appl. Math. Sci. 2, 69 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, W., Zhang, C. (2010). Stability and Bifurcation of a Three-Dimension Discrete Neural Network Model with Delay. In: Zhang, L., Lu, BL., Kwok, J. (eds) Advances in Neural Networks - ISNN 2010. ISNN 2010. Lecture Notes in Computer Science, vol 6063. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13278-0_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13278-0_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13277-3

  • Online ISBN: 978-3-642-13278-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy