Abstract
This paper presents a method based on articulated models for the registration of spine data extracted from multimodal medical images of patients with scoliosis. With the ultimate aim being the development of a complete geometrical model of the torso of a scoliotic patient, this work presents a method for the registration of vertebral column data using 3D magnetic resonance images (MRI) acquired in prone position and X-ray data acquired in standing position for five patients with scoliosis. The 3D shape of the vertebrae is estimated from both image modalities for each patient, and an articulated model is used in order to calculate intervertebral transformations required in order to align the vertebrae between both postures. Euclidean distances between anatomical landmarks are calculated in order to assess multimodal registration error. Results show a decrease in the Euclidean distance using the proposed method compared to rigid registration and more physically realistic vertebrae deformations compared to thin-plate-spline (TPS) registration thus improving alignment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cottalorda, Kohler, R.: Recueil terminologique de la scoliose idiopathique. In: Sauramps Medical (ed.) La scoliose idiopathique (sous la direction de J. Bérard et R. Kohler), pp. 33–40 (1997)
Asher, M., Beringer, G., Orrick, J., Halverhout, N.: The current status of scoliosis screening in north america, 1986: Results of a survey by mailed questionnaire. Spine 14, 652–662 (1989)
Roach, J.: Adolescent idiopathic scoliosis. Orthop. Clin. North Am. 30, 353–365 (1999)
van de Kraats, E.B., van Walsum, T., Verlaan, J.J., Oner, F.C., Viergever, M.A., Niessen, W.J.: Noninvasive magnetic resonance to three-dimensional rotational x-ray registration of vertebral bodies for image-guided spine surgery. Spine 29(3), 293–297 (2004)
Tomazevic, D., Likar, B., Pernus, F.: 3-D/2-D registration by integrating 2-D information in 3-D. IEEE Transactions on Medical Imaging 25(1), 17–27 (2006)
Cheriet, F., Dansereau, J., Petit, Y., Labelle, H., de Guise, J.A.: Towards the self-calibration of a multi-view radiographic imaging system for the 3D reconstruction of the human spine and rib cage. International Journal of Pattern Recognition and Artificial Intelligence 13(5), 761–779 (1999)
Little, J.A., Hill, D.L.G., Hawkes, D.J.: Deformations incorporating rigid structures. In: Proceedings of the Workshop on Mathematical Methods in Bio- medical Image Analysis, San Francisco, CA, pp. 104–113. IEEE Comput. Soc. Press, Los Alamitos (1996)
Boisvert, J., Pennec, X., Labelle, H., Cheriet, F., Ayache, N.: Principal Spine Shape Deformation Modes Using Riemannian Geometry and Articulated Models. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 346–355. Springer, Heidelberg (2006)
Kadoury, S., Paragios, N.: Surface/Volume-Based Articulated 3D Spine Inference through Markov Random Fields. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 92–99. Springer, Heidelberg (2009)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins, Baltimore (1996)
Delorme, S., Labelle, H., Poitras, B., Rivard, C.-H., Coillard, C., Dansereau, J.: Pre-, Intra-, and Postoperative Three-Dimensional Evaluation of Adolescent Idiopathic Scoliosis. Journal of spinal disorders 13(2), 93–101 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harmouche, R., Cheriet, F., Labelle, H., Dansereau, J. (2010). Articulated Model Registration of MRI/X-Ray Spine Data. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2010. Lecture Notes in Computer Science, vol 6112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13775-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-13775-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13774-7
Online ISBN: 978-3-642-13775-4
eBook Packages: Computer ScienceComputer Science (R0)