Abstract
In this paper we present two fine and coarse approaches for the efficient registration of 3D medical images using the framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM). This formalism has several important advantages since it allows large, smooth and invertible deformations and has interesting statistical properties. We first highlight the influence of the smoothing kernel in the LDDMM framework. We then show why approaches taking into account several scales simultaneously should be used for the registration of complex shapes, such as those treated in medical imaging. We then present our fine and coarse approaches and apply them to the registration of binary images as well as the longitudinal estimation of the early brain growth in preterm MR images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: MICCAI 2006, Part I. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)
Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12, 26–41 (2008)
Beg, F.M., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)
Beg, M., Khan, A.: Symmetric data attachment terms for large deformation image registration. IEEE Transactions on Medical Imaging 26(9), 1179–1189 (2007)
Beg, M.F., Helm, P.A., McVeigh, E., Miller, M.I., Winslow, R.L.: Computational cardiac anatomy using MRI. Magnetic Resonance in Medecine 52(5), 1167–1174 (2004)
Bruveris, M., Gay-Balmaz, F., Holm, D., Ratiu, T.: The momentum map representation of images. J. Nonlin. Sci. (February 20, 2010) (submitted), JNLS-D-10-00024
Cao, Y., Miller, M.I., Mori, S., Winslow, R.L., Younes, L.: Diffeomorphic matching of diffusion tensor images. In: CVPRW 2006: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop, p. 67 (2006)
Cao, Y., Miller, M.I., Winslow, R.L., Younes, L.: Large deformation diffeomorphic metric mapping of vector fields. IEEE Trans. Med. Imaging 24(9), 1216–1230 (2005)
Crum, W., Tanner, C., Hawkes, D.: Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging. Physics in Medicine and Biology 50(21), 5153–5174 (2005)
Das, S.R., Avants, B.B., Grossman, M., Gee, J.C.: Registration based cortical thickness measurement. NeuroImage 45, 867–879 (2009)
Dupuis, P., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. LVI(3), 587–600 (1998)
Glaunes, J.: Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l’anatomie numérique. Ph.D. thesis, Université Paris 13 (2005)
Haber, E., Modersitzki, J.: Cofir: coarse and fine image registration. In: SIAM Real-Time PDE-Constrained Optimization, pp. 37–49 (2007)
Hart, G., Zach, C., Niethammer, M.: An optimal control approach for deformable registration. In: Computer Vision and Pattern Recognition Workshop, pp. 9–16 (2009)
Helm, P., Younes, L., Beg, M., Ennis, D., Leclercq, C., Faris, O., McVeigh, E., Kass, D., Miller, M., Winslow, R.: Evidence of structural remodeling in the dyssynchronous failing heart. Circulation Research 98, 125–132 (2006)
Hernandez, M., Bossa, M.N., Olmos, S.: Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int. J. Comput. Vision 85(3), 291–306 (2009)
Younes, L., Arrate, F., Miller, M.I.: Evolutions equations in computational anatomy. Neuroimage (November 2008)
Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., Joshi, S.: Multi-modal image set registration and atlas formation. Med. Image. Anal. 10(3), 440–451 (2006)
Miller, M., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209–228 (2006)
Miller, M., Younes, L.: Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision 41(1-2), 61–84 (2001)
Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17(1), 87–97 (1998)
Trouvé, A., Younes, L.: Metamorphoses through lie group action. Foundations of Computational Mathematics 5(2), 173–198 (2005)
Vaillant, M., Miller, M., Trouvé, A., Younes, L.: Statistics on diffeomorphisms via tangent space representations. Neuroimage 23(S1), S161–S169 (2004)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)
Younes, L.: Shapes and Diffeomorphisms. Springer, Heidelberg (2008)
Younes, L., Qiu, A., Winslow, R.L., Miller, M.I.: Transport of relational structures in groups of diffeomorphisms. Journal of Mathematical Imaging and Vision 32, 41–56 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Risser, L., Vialard, FX., Murgasova, M., Holm, D., Rueckert, D. (2010). Large Deformation Diffeomorphic Registration Using Fine and Coarse Strategies. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds) Biomedical Image Registration. WBIR 2010. Lecture Notes in Computer Science, vol 6204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14366-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-14366-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14365-6
Online ISBN: 978-3-642-14366-3
eBook Packages: Computer ScienceComputer Science (R0)