Skip to main content

Leakage Resilient Cryptography in Practice

  • Chapter
  • First Online:
Towards Hardware-Intrinsic Security

Abstract

Theoretical treatments of physical attacks have recently attracted the attention of the cryptographic community, as witnessed by various publications, e.g., [1, 17, 22, 24, 29, 31, 33, 34, 42]. These works consider adversaries enhanced with abilities such as inserting faults during a computation or monitoring side-channel leakages.

Olivier Pereira is a Research Associate of the Belgian Fund for Scientific Research (FNRS - F.R.S.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [31, 42], an implementation is defined as the combination of a target device and a measurement setup. We use the same definition in this chapter.

  2. 2.

    In fact, for the PRF construction of Fig. 10, we can prove a slightly stronger result. Namely, we only need that the leakage of the last PRF round (i.e., the last 2PRG invocation) of the last query \(x_{q+1}\) is not provided to the adversary.

References

  1. A. Akavia, S. Goldwasser, V. Vaikuntanathan, in Simultaneous Hardcore Bits and Cryptography Against Memory Attacks. Proceedings of TCC 2009, San Francisco, CA, USA. Lecture Notes in Computer Science, vol. 5444 (Springer, Berlin, Heidelberg, Mar 2009), pp. 474–495

    Google Scholar 

  2. M.L. Akkar, R. Bévan, P. Dischamp, D. Moyart, in Power Analysis, What Is Now Possible.... Proceedings of ASIACRYPT 2001, Kyoto, Japan. Lecture Notes in Computer Science, vol. 1976 (Springer, Berlin, Heidelberg, New York, Dec 2001), pp. 489–502

    Google Scholar 

  3. R. Anderson, M. Kuhn, in Tamper Resistance - A Cautionary Note, USENIX Workshop on Electronic Commerce, Oakland, CA, USA, Nov 1996, pp 1–11

    Google Scholar 

  4. M. Bellare, A. Desai, E. Jokipii, P. Rogaway, in A Concrete Security Treatment of Symmetric Encryption. Proceedings of FOCS 1997, Miami, FL, USA, Oct 1997, pp. 394–403.

    Google Scholar 

  5. M. Bellare, B. Yee, in Forward-Security in Private-Key Cryptography. Proceedings of CT-RSA 03, San Francisco, CA, USA. Lecture Notes in Computer Science, vol. 2612 (Springer, Heidelberg, Apr 2003), pp. 1–18

    Google Scholar 

  6. M. Blum, S. Micali, How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput. 13(4), 850–863 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Cachin, Entropy Measures and Unconditional Security in Cryptography. Ph.D. thesis, ETH Dissertation, num 12187, 1997

    Google Scholar 

  8. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, in Towards Sound Approaches to Counteract Power-Analysis Attacks. Proceedings of CRYPTO 1999, Santa Barbara, CA, USA. Lecture Notes in Computer Science, vol. 1666 (Springer, Berlin, Heidelberg, New York, Aug 1999), pp. 398–412

    Google Scholar 

  9. J. Daemen, V. Rijmen, in The Wide Trail Design Strategy. Proceedings of Cryptography and Coding, 8th IMA International Conference, Cirencester, UK. Lecture Notes in Computer Science, vol. 2260 (Springer, Berlin, Dec 2001), pp. 222–238

    Google Scholar 

  10. Y. Dodis, Y. Tauman Kalai, S. Lovett, On Cryptography with Auxiliary Input, in the proceedings of STOC 2009, pp 621-630, Bethesda, Maryland, USA, June 2009.

    Google Scholar 

  11. Télécom ParisTech, The DPA Contest, http://www.dpacontest.org/

  12. S. Dziembowski, K. Pietrzak, in Leakage-Resilient Cryptography. Proceedings of FOCS 2008, Washington, DC, USA, Oct 2008, pp. 293–302

    Google Scholar 

  13. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, M.T. Manzuri Shalmani, in On the Power of Power Analysis in the Real World: A Complete Break of the KeeLoqCode Hopping Scheme. Proceedings of CRYPTO 2008, Santa Barbara, CA, USA. Lecture Notes in Computer Science, vol. 5157 (Springer, Berlin, Heidelberg, Aug 2008), pp. 203–220

    Google Scholar 

  14. ECRYPT Network of Excellence in Cryptology, The Side-Channel Cryptanalysis Lounge, http://www.crypto.ruhr-uni-bochum.de/ensclounge.html

  15. ECRYPT Network of Excellence in Cryptology, The eSTREAM Project, http://www.ecrypt.eu.org/stream/, http://www.ecrypt.eu.org/stream/call/

  16. S. Faust, L. Reyzin, E. Tromer, Protecting Circuits from Computationally-Bounded Leakage, Cryptology ePrint Archive, Report 2009/379

    Google Scholar 

  17. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin, in Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering. Proceedings of TCC 2004, Cambridge, MA, USA. Lecture Notes in Computer Science, vol. 2951 (Springer, Berlin, Feb 2004), pp. 258–277

    Google Scholar 

  18. O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  19. L. Goubin, J. Patarin, in DES and Differential Power Analysis. Proceedings of CHES 1999, Worcester, MA, USA. Lecture Notes in Computer Science, vol. 1717 (Springer, Berlin, Aug 1999), pp. 158–172

    Google Scholar 

  20. J.A Halderman, S.D. Schoen, N. Heninger, W. Clarkson, J.A. Calandrino, A.J. Feldman, J. Appelbaum, E.W. Felten, in Lest We Remember: Cold Boot Attacks on Encryption Keys. Proceedings of the USENIX Security Symposium 2008, San Jose, CA, USA, Aug 2008, pp. 45–60

    Google Scholar 

  21. C. Hsiao, C. Lu, L. Reyzin, in Conditional Computational Entropy, or Toward Separating Pseudoentropy from Compressibility. Proceedings of EUROCRYPT 2007, Barcelona, Spain. Lecture Notes in Computer Science, vol. 4515 (Springer, Berlin, May 2007), pp. 169–186

    Google Scholar 

  22. Y. Ishai, A. Sahai, D. Wagner, in Private Circuits: Securing Hardware against Probing Attacks. Proceedings of Crypto 2003, Santa Barbara, CA, USA. Lecture Notes in Computer Science, vol. 2729 (Springer, Berlin, Aug 2003), pp. 463–481

    Google Scholar 

  23. P. Junod, S. Vaudenay, in FOX: A New Family of Block Ciphers. Proceedings of SAC 2004, Waterloo, Canada. Lecture Notes in Computer Science, vol. 3357, (Springer, Heidelberg, Aug 2004), pp. 114–129

    Google Scholar 

  24. J. Katz, in Universally Composable Multi-Party Computation Using Tamper-Proof Hardware. Proceedings of EUROCRYPT 2007, Barcelona, Spain. Lecture Notes in Computer Science, vol. 4515 (Springer, Berlin, Heidelberg, May 2007), pp. 115–128

    Google Scholar 

  25. L.R. Knudsen, in Practically Secure Feistel Ciphers. Proceedings FSE 1993, Cambridge, UK. Lecture Notes in Computer Science, vol. 809 (Springer, Berlin, Heidelberg, Dec 1993), pp. 211–221

    Google Scholar 

  26. P. Kocher, J. Jaffe, B. Jun, in Differential Power Analysis. Proceedings of Crypto 1999, Santa Barbara, CA, USA. Lecture Notes in Computer Science, vol. 1666 (Springer, Berlin, Heidelberg, New York, Aug 1999), pp. 398–412

    Google Scholar 

  27. P. Kocher, Leak Resistant Cryptographic Indexed Key Update, U.S. Patent 6539092, 2003

    Google Scholar 

  28. P. Kocher, in Design and Validation Strategies for Obtaining Assurance in Countermeasures to Power Analysis and Related Attacks. Proceedings of the NIST Physical Security Workshop, Honolulu, HI, USA, Sept 2005

    Google Scholar 

  29. B. Köpf, D. Basin, in An Information Theoretic Model for Adaptive Side-Channel Attacks. Proceedings of the ACM Conference on Computer and Communications Security 2007, Alexandria, VA, USA, Oct 2007, pp. 286–296

    Google Scholar 

  30. M. Luby, C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Micali, L. Reyzin, in Physically Observable Cryptography. Proceedings of TCC 2004, Cambridge, MA, USA. Lecture Notes in Computer Science, vol. 2951 (Springer, Heidelberg, Feb 2004), pp. 278–296

    Google Scholar 

  32. T.S. Messerges, in Using Second-Order Power Analysis to Attack DPA Resistant Software. Proceedings of CHES 2000, Worcester, MA, USA. Lecture Notes in Computer Science, vol. 2523 (Springer, Berlin, Heidelberg, New York, Aug 2000), pp. 238–251

    Google Scholar 

  33. C. Petit, F.-X. Standaert, O. Pereira, T.G. Malkin, M. Yung, in A Block Cipher Based PRNG Secure Against Side-Channel Key Recovery. Proceedings of ASIACCS 2008, Tokyo, Japan, Mar 2008, pp. 56–65

    Google Scholar 

  34. K. Pietrzak, in A Leakage-Resilient Mode of Operation. Proceedings of Eurocrypt 2009, Cologne, Germany. Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin, Heidelberg, Apr 2009), pp. 462–482

    Google Scholar 

  35. K. Pietrzak, in Provable Security for Physical Cryptography, invited talk. Proceedings of WEWORC 2009, Graz, Austria, July 2009

    Google Scholar 

  36. M. Renauld, F.-X. Standaert, Algebraic Side-Channel Attacks, Cryptology ePrint Archive: Report 2009/279

    Google Scholar 

  37. M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, in Algebraic Side-Channel Attacks on the AES: Why Time Also Matters in DPA. Proceedings of CHES 2009, Lausanne, Switzerland. Lecture Notes in Computer Science, vol. 5746 (Springer, Berlin, Sept 2009), pp. 97–111

    Google Scholar 

  38. RCIS (Research Center for Information Security), SASEBO (Side-Channel Attack Standard Evaluation Boards), http://www.rcis.aist.go.jp/special/SASEBO/

  39. W. Schindler, K. Lemke, C. Paar, in A Stochastic Model for Differential Side-Channel Cryptanalysis. Proceedings of CHES 2005, Edinburgh, Scotland. Lecture Notes in Computer Science, vol. 3659 (Springer, Berlin, Sept 2005), pp. 30–46

    Google Scholar 

  40. K. Schramm, T.J. Wollinger, C. Paar, in A New Class of Collision Attacks and Its Application to DES. Proceedings of FSE 2003, Lund, Sweden. Lecture Notes in Computer Science, vol. 2887 (Springer, Heidelberg, Feb 2003), pp. 206–222

    Google Scholar 

  41. N. Smart, D. Page, E. Oswald, Randomised representations. IET Inf. Secur. 2(2), 19–27 (June 2008)

    Article  Google Scholar 

  42. F.-X. Standaert, T.G. Malkin, M. Yung, in A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. Proceedings of Eurocrypt 2009, Cologne, Germany. Lecture Notes in Computer Science, vol. 5479 (Springer, Berlin, Heidelberg, Apr 2009), pp. 443–461, extended version available on the Cryptology ePrint Archive, Report 2006/139, http://eprint.iacr.org/2006/139

  43. F.-X. Standaert, E. Peeters, C. Archambeau, J.-J. Quisquater, in Towards Security Limits in Side-Channel Attacks. Proceedings of CHES 2006, Yokohama, Japan, Oct 2006. Lecture Notes in Computer Science, vol. 4249 (Springer, Heidelberg, 2006), pp. 30–45, latest version available on the Cryptology ePrint Archive, Report 2007/222, http://eprint.iacr.org/2007/222.

    Google Scholar 

  44. F.-X. Standaert, C. Archambeau, in Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages. Proceedings of CHES 2008, Washington, DC, USA. Lecture Notes in Computer Science, vol. 5154 (Springer, Berlin, Heidelberg, Aug 2008), pp. 411–425

    Google Scholar 

  45. F.-X. Standaert, B. Gierlichs, I. Verbauwhede, in Partition vs. Comparison Side-Channel Distinguishers: An Empirical Evaluation of Statistical Tests for Univariate Side-Channel Attacks. Proceedings of ICISC 2008, Seoul, Korea. Lecture Notes in Computer Science, vol. 5461 (Springer, Berlin, Dec 2008), pp. 253–267

    Google Scholar 

  46. F.-X. Standaert, P. Bulens, G. de Meulenaer, N. Veyrat-Charvillon, Improving the Rules of the DPA Contest, Cryptology ePrint Archive, Report 2006/139, http://eprint.iacr.org/2006/139

  47. K. Tiri, M. Akmal, I. Verbauwhede, A Dynamic and Differential CMOS Logic with Signal Independent Power Consumption to Withstand Differential Power Analysis on Smart Cards, ESSCIRC 2003, Estoril, Portugal, September 2003

    Google Scholar 

  48. S. Vaudenay, Decorrelation: a theory for block cipher security. J. Cryptol. 16(4), 249–286 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. A.C. Yao, in Theory and Applications of Trapdoor Functions (Extended Abstract). Proceedings of FOCS 1982, Chicago, IL, USA, Nov 1982, pp. 80–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François-Xavier Standaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Standaert, FX., Pereira, O., Yu, Y., Quisquater, JJ., Yung, M., Oswald, E. (2010). Leakage Resilient Cryptography in Practice. In: Sadeghi, AR., Naccache, D. (eds) Towards Hardware-Intrinsic Security. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14452-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14452-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14451-6

  • Online ISBN: 978-3-642-14452-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy