Skip to main content

Measuring Adjective Spaces

  • Conference paper
Artificial Neural Networks – ICANN 2010 (ICANN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6352))

Included in the following conference series:

Abstract

In this article, we use the model adjectives using a vector space model. We further employ three different dimension reduction methods, the Principal Component Analysis (PCA), the Self-Organizing Map (SOM), and the Neighbor Retrieval Visualizer (NeRV) in the projection and visualization task, using antonym test for evaluation. The results show that while the results between the three methods are comparable, the NeRV performs best of the three, and all of them are able to preserve meaningful information for further analysis.

This work has been supported by the Academy of Finland and the Finnish Funding Agency for Technology and Innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Firth, J.R.: Papers in linguistics 1934-1951. Oxford University Press, Oxford (1957)

    Google Scholar 

  2. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  3. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  4. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization

    Google Scholar 

  5. Honkela, T., Pulkki, V., Kohonen, T.: Contextual relations of words in Grimm tales, analyzed by self-organizing map. In: Proceedings of ICANN 1995, Nanterre, France, vol. II, pp. 3–7. EC2 (1995)

    Google Scholar 

  6. Lagus, K., Airola, A.: Semantic clustering of verbs – analysis of morphosyntactic contexts using the SOM algorithm. In: Acquisition and Representation of Word Meaning: Theoretical and computational perspectives, Pisa, Roma. Linguistica Computazionale. Instituti Editoriali E Poligrafici Internazionali, vol. XXII-XXIII, pp. 263–287 (2005)

    Google Scholar 

  7. Honkela, T.: Adaptive and holistic knowledge representations using self-organizing maps. In: Proceedings of Int. Conference on Intelligent Information Processing, IIP 2000, pp. 81–86. IFIP (2000)

    Google Scholar 

  8. Schütze, H.: Word Space. In: Advances in Neural Information Processing Systems, NIPS Conference, vol. 5, pp. 895–902. Morgan Kaufmann Publishers Inc., San Francisco (1993); Journal of Machine Learning Research  11, 451–490 (2010)

    Google Scholar 

  9. Venna, J., Kaski, S.: Nonlinear dimensionality reduction as information retrieval. In: Proceedings of the 11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Honkela, T., Lindh-Knuutila, T., Lagus, K. (2010). Measuring Adjective Spaces. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds) Artificial Neural Networks – ICANN 2010. ICANN 2010. Lecture Notes in Computer Science, vol 6352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15819-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15819-3_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15818-6

  • Online ISBN: 978-3-642-15819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy