Abstract
This paper presents a brief overview of current trends in the construction of population and multi-modal heart atlases in our group and their application to atlas-based cardiac image analysis. The technical challenges around the construction of these atlases are organized around two main axes: groupwise image registration of anatomical, motion and fiber images and construction of statistical shape models. Application-wise, this paper focuses on the extraction of atlas-based biomarkers for the detection of local shape or motion abnormalities, addressing several cardiac applications where the extracted information is used to study and grade different pathologies. The paper is concluded with a discussion about the role of statistical atlases in the integration of multiple information sources and the potential this can bring to in-silico simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexander, D., et al.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imag. 20(11), 1131–1139 (2001)
Anderson, R.H., et al.: The three-dimensional arrangement of the myocytes in the ventricular walls. Clin. Anat. 22, 64–76 (2009)
Ardekani, S., et al.: Computational method for identifying and quantifying shape features of human left ventricular remodeling. Ann. Biomed. Eng. 37(6), 1043–1054 (2009)
Ashburner, J., Friston, K.J.: Voxel-based morphometry – the methods. NeuroImage 11(6), 805–821 (2000)
Basser, P.J., et al.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. Ser. B 103(3), 247–254 (1994)
Blezek, D.J., Miller, J.V.: Atlas stratification. Med. Image Anal. 11(5), 443–457 (2007)
Chandrashekara, R., et al.: Analysis of 3-D myocardial motion in tagged MR images using nonrigid image registration. IEEE Trans. Med. Imag. 23(10), 1245–1250 (2004)
Commowick, O., et al.: Detection of DTI white matter abnormalities in multiple sclerosis patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 975–982. Springer, Heidelberg (2008)
Cootes, T.F., Taylor, C.J.: Anatomical statistical models and their role infeature extraction. Brit. J. Radiol. 77, S133–S139 (2004)
Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Tech. Rep., University of Manchester, UK (2004)
De Craene, M., et al.: Temporal diffeomorphic free-form deformation for strain quantification in 3D-US images. In: MICCAI 2010 (2010) (in press)
De Craene, M., et al.: Large diffeomorphic FFD registration for motion and strain quantification from 3D-US sequences. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 437–446. Springer, Heidelberg (2009)
De Lathauwer, L., et al.: A multilinear singular value decomposition. SIAM J. Matrix Anal. A. 21(4), 1253–1278 (2000)
Diedrichsen, J.: A spatially unbiased atlas template of the human cerebellum. NeuroImage 33(1), 127–138 (2006)
Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)
Duchateau, N., et al.: Septal flash assessment on CRT candidates based on statistical atlases of motion. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 759–766. Springer, Heidelberg (2009)
Durrleman, S., et al.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009)
Figueras i Ventura, R.M., et al.: Bilinear point distribution models for heart motion analysis. In: ISBI 2010, pp. 476–479 (2010)
Frangi, A.F., et al.: Automatic construction of multiple-object three-dimensional statistical shape models: Application to cardiac modeling. IEEE Trans. Med. Imag. 21(9), 1151–1166 (2002)
Guimond, A., et al.: Average brain models: A convergence study. Comput. Vision and Image Understanding 77(2), 192–210 (1999)
Hansegård, J., et al.: Constrained active appearance models for segmentation of triplane echocardiograms. IEEE Trans. Med. Imag. 26(10), 1391–1400 (2007)
Hoogendoorn, C., et al.: Bilinear models for spatio-temporal point distribution analysis: Application to extrapolation of left ventricular, biventricular and whole heart cardiac dynamics. Int. J. Comput. Vision (2009) (in Press)
Hoogendoorn, C., et al.: A groupwise mutual information metric for cost efficient selection of a suitable reference in cardiac computational atlas construction. In: SPIE Med. Im., vol. 7623, pp. 76231R–76231R-9 (2010)
Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE T. Ultrason. Ferr. 39(2), 262–267 (1992)
Kwan, R.K., et al.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imag. 18(11), 1085–1097 (1999)
Kwon, D.H., et al.: Steep left ventricle to aortic root angle and hypertrophic obstructive cardiomyopathy: study of a novel association using three-dimensional multimodality imaging. Heart 95(21), 1784–1791 (2009)
Ledesma-Carbayo, M.J., et al.: Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation. IEEE Trans. Med. Imag. 24(9), 1113–1126 (2005)
Miller, M.I., Qiu, A.: The emerging discipline of computational functional anatomy. NeuroImage 45(1), suppl. 1, 16–39 (2009)
Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies - a technical review. NMR Biomed. 15, 468–480 (2002)
Muñoz Moreno, E., Frangi, A.F.: Spatial normalization of cardiac diffusion tensor imaging for modeling the muscular structure of the myocardium. In: ICIP 2010 (2010) (in press)
Ordás, S., et al.: A statistical shape model of the heart and its application to model-based segmentation. In: SPIE Med. Im., vol. 6511, p. 6511K (2007)
Park, H., et al.: Least biased target selection in probabilistic atlas construction. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 419–426. Springer, Heidelberg (2005)
Park, H., et al.: Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans. Med. Imag. 22(4), 483–492 (2003)
Parsai, C., et al.: Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. Eur. Heart J. 30(8), 940–949 (2009)
Perperidis, D., et al.: Spatio-temporal free-form registration of cardiac MR image sequences. Med. Image Anal. 9(5), 441–456 (2005)
Peters, J., et al.: Optimizing boundary detection via simulated search with applications to multi-modal heart segmentation. Med. Image Anal. 14, 70–84 (2010)
Petersen, S.E., et al.: Differentiation of athlete’s heart from pathological forms of cardiac hypertrophy by means of geometric indices derived from cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 7(3), 551–558 (2005)
Peyrat, J.-M., et al.: Registration of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic demons. IEEE Trans. Med. Imag. 29(7), 1351–1368 (2010)
Qiu, A., et al.: Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes. NeuroImage 45(1), supp. 1, 51–60 (2009)
Rao, A., et al.: Spatial transformation of motion and deformation fields using nonrigid registration. IEEE Trans. Med. Imag. 23(9), 1065–1076 (2004)
Remme, E.W., et al.: Extraction and quantification of left ventricular deformation modes. IEEE Trans. Biomed. Eng. 51(11), 1923–1931 (2004)
Rueckert, D., et al.: Diffeomorphic registration using B-splines. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 702–709. Springer, Heidelberg (2006)
Segars, W.P., et al.: Realistic CT simulation using the 4D XCAT phantom. Med. Phys. 35(8), 3800–3808 (2008)
Sjöstrand, K., et al.: Sparse decomposition and modeling of anatomical shape variation. IEEE Trans. Med. Imag. 26(12), 1625–1635 (2007)
Suinesiaputra, A., et al.: Automated detection of regional wall motion abnormalities based on a statistical model applied to multi-slice short-axis cardiac MR images. IEEE Trans. Med. Imag. 28(4), 595–607 (2009)
Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Comput. 12(6), 1247–1283 (2000)
Tobon-Gomez, C., et al.: Automatic construction of 3D-ASM intensity models by simulating image acquisition: Application to myocardial gated SPECT studies. IEEE Trans. Med. Imag. 27(11), 1655–1667 (2008)
Tobon-Gomez, C., et al.: 3D mesh based wall thickness measurement: identification of left ventricular hypertrophy phenotypes. In: EMBS 2010 (2010) (in press)
Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vision 28(3), 213–221 (1998)
Twining, C.J., Marsland, S.: Constructing an atlas for the diffeomorphism group of a compact manifold with boundary, with application to the analysis of image registrations. J. Comput. Appl. Math. 222(2), 411–428 (2008)
Vercauteren, T., et al.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)
Young, A.A., Frangi, A.F.: Computational cardiac atlases: from patient to population and back. Experimental Physiology 94(5), 578–596 (2009)
Zhu, Y., et al.: Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans. Med. Imag. 29(3), 669–687 (2010)
Zimmerman, V., et al.: Modeling the Purkinje conduction system with a non deterministic rule based iterative method. IEEE Computers in Cardiology 36, 461–464 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Craene, M. et al. (2010). Atlas Construction and Image Analysis Using Statistical Cardiac Models. In: Camara, O., Pop, M., Rhode, K., Sermesant, M., Smith, N., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. STACOM 2010. Lecture Notes in Computer Science, vol 6364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15835-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-15835-3_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15834-6
Online ISBN: 978-3-642-15835-3
eBook Packages: Computer ScienceComputer Science (R0)