Abstract
There has been a long debate on the “most important” operator when applying genetic algorithms. This is very closely related to the favorite binary encoding, namely standard binary or Gray. Rather than confronting both approaches, this article is motivated by the search for an encoding that supports both mutation and recombination. For this purpose an encoding scheme is proposed and evaluated both using metrics and experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Caruana, R.A., Schaffer, J.D.: Representation and hidden bias: Gray versus binary coding in genetic algorithms. In: Leard, J. (ed.) Proc. of the 5th Int. Conf. on Machine Learning, pp. 153–161. Morgan Kaufmann, San Mateo (1988)
Caruana, R.A., Schaffer, J.D., Eshelman, L.J.: Using multiple representations to improve inductive bias: Gray and binary coding for genetic algorithms. In: Segre, A.M. (ed.) Proc. of the Sixth Int. Workshop on Machine Learning, pp. 375–378. Morgan Kaufmann, San Mateo (1989)
Chakraborty, U.K., Janikow, C.Z.: An analysis of gray versus binary encoding in genetic search. Information Sciences 156, 253–269 (2003)
Collins, J.J., Eaton, M.: Genocodes for genetic algorithms. In: Proc. of Mendel 1997, pp. 23–30. PC-DIR, Brno (1997)
Das, R., Whitley, D.L.: The only challenging problems are deceptive: Global search by solving order-1 hyperplanes. In: Belew, R.K., Booker, L.B. (eds.) Proc. of the Fourth Int. Conf. on Genetic Algorithms, pp. 166–173. Morgan Kaufmann, San Mateo (1991)
Deb, K., Goldberg, D.E.: Sufficient conditions for arbitrary binary functions. Ann. Math. Artificial Intell. 10, 385–408 (1994)
Eaton, M., Collins, J.J.: A comparison of encoding schemes for genetic algorithms. In: Proc. of the World Congress on Neural Networks, pp. 1067–1070. INNS Press, New York (1996)
Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block hypothesis. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 109–126. Morgan Kaufmann, San Mateo (1993)
Goldberg, D.E.: Zen and the art of genetic algorithms. In: Schaffer, J.D. (ed.) Proc. of the Third Int. Conf. on Genetic Algorithms, pp. 80–85. Morgan Kaufmann, San Mateo (1989)
Holland, J.H.: Adaptation in Natural and Artifical Systems. University of Michigan Press, Ann Arbor (1975)
Mathias, K., Whitley, D.: Transforming the search space with Gray coding. In: IEEE Conf. onf Evolutionary Computation, pp. 513–518. IEEE Service Center, Piscataway (1994)
Mühlenbein, H.: How genetic algorithms really work: I. Mutation and hillclimbing. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature 2, pp. 15–25. Elsevier Science, Amsterdam (1992)
Rana, S.B., Whitley, L.D.: Bit representations with a twist. In: Bäck, T. (ed.) Proc. of the Seventh Int. Conf. on Genetic Algorithms, pp. 188–195. Morgan Kaufmann, San Francisco (1997)
Rothlauf, F.: Binary representations of integers and the performance of selectorecombinative genetic algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 99–108. Springer, Heidelberg (2002)
Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Springer, Heidelberg (2006)
Weicker, K.: Auf der Suche nach dem Codierunsgral für genetische Algorithmen. In: Diekert, V., Weicker, K., Weicker, N. (eds.) Informatik als Dialog zwischen Theorie und Anwendung, pp. 35–44. Vieweg+Teubner, Wiesbaden (2009)
Whitley, D., Rana, S.: Representation, search and genetic algorithms. In: AAAI 1997: 14th National Conf. on Artificial Intelligence, pp. 497–502. AAAI Press/MIT Press (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Weicker, K. (2010). A Binary Encoding Supporting Both Mutation and Recombination. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-15844-5_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15843-8
Online ISBN: 978-3-642-15844-5
eBook Packages: Computer ScienceComputer Science (R0)