Abstract
Timed automata are frequently used to model real-time systems. Their determinization is a key issue for several validation problems. However, not all timed automata can be determinized, and determinizability itself is undecidable. In this paper, we propose a game-based algorithm which, given a timed automaton with ε-transitions and invariants, tries to produce a language-equivalent deterministic timed automaton, otherwise a deterministic over-approximation. Our method subsumes two recent contributions: it is at once more general than the determinization procedure of [4] and more precise than the approximation algorithm of [11].
Chapter PDF
Similar content being viewed by others
References
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)
Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)
Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proceedings of the 5th IFAC Symposium on System Structure and Control (SSSC 1998), pp. 469–474. Elsevier Science, Amsterdam (1998)
Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg (2009)
Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? Research Report LSV-09-08, Laboratoire Spécification et Vérification, ENS Cachan, France, April 2009, 32 pages (2009)
Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize timed automata. Research Report 7381, INRIA (September 2010), http://hal.inria.fr/inria-00524830
Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire d’habilitation, Université Paris 7, Paris, France (January 2009)
Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 219–233. Springer, Heidelberg (2005)
Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)
Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in System Design 34(3), 238–304 (2009)
Manasa, L., Krishna, S.N.: Integer reset timed automata: Clock reduction and determinizability. CoRR arXiv:1001.1215v1 (2010)
Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with integer resets: Language inclusion and expressiveness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008)
Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Information Processing Letters 99(6), 222–226 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bertrand, N., Stainer, A., Jéron, T., Krichen, M. (2011). A Game Approach to Determinize Timed Automata. In: Hofmann, M. (eds) Foundations of Software Science and Computational Structures. FoSSaCS 2011. Lecture Notes in Computer Science, vol 6604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19805-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-19805-2_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19804-5
Online ISBN: 978-3-642-19805-2
eBook Packages: Computer ScienceComputer Science (R0)