Abstract
The Cluster Editing problem asks to transform a graph by at most k edge modifications into a disjoint union of cliques. The problem is NP-complete, but several parameterized algorithms are known. We present a novel search tree algorithm for the problem, which improves running time from O*(1.76k) to O*(1.62k). In detail, we can show that we can always branch with branching vector (2,1) or better, resulting in the golden ratio as the base of the search tree size. Our algorithm uses a well-known transformation to the integer-weighted counterpart of the problem. To achieve our result, we combine three techniques: First, we show that zero-edges in the graph enforce structural features that allow us to branch more efficiently. Second, by repeatedly branching we can isolate vertices, releasing costs. Finally, we use a known characterization of graphs with few conflicts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Böcker, S., Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)
Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)
Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Inform. Process. Lett. 111(14), 717–721 (2011)
Cao, Y., Chen, J.: Cluster Editing: Kernelization Based on Edge Cuts. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 60–71. Springer, Heidelberg (2010)
Chen, J., Meng, J.: A 2k Kernel for the Cluster Editing Problem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidelberg (2010)
Damaschke, P.: Bounded-Degree Techniques Accelerate Some Parameterized Graph Algorithms. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 98–109. Springer, Heidelberg (2009)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Fixed-parameter algorithms for clique generation. Theor. Comput. Syst. 38(4), 373–392 (2005)
Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8-10), 718–726 (2009)
Hsu, W.-L., Ma, T.-H.: Substitution Decomposition on Chordal Graphs and Applications. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 52–60. Springer, Heidelberg (1991)
Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta. Inform. 23(3), 311–323 (1986)
Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proc. of ACM Symposium on Theory of Computing, STOC 2011, pp. 469–478. ACM (2011), doi:10.1145/1993636.1993699
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)
Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Inform. Process. Lett. 73, 125–129 (2000)
Rosamond, F. (ed.): FPT News: The Parameterized Complexity Newsletter (Since 2005), http://fpt.wikidot.com/
Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J.H., Böcker, S., Stoye, J., Baumbach, J.: Partitioning biological data with transitivity clustering. Nat. Methods 7(6), 419–420 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Böcker, S. (2011). A Golden Ratio Parameterized Algorithm for Cluster Editing. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2011. Lecture Notes in Computer Science, vol 7056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25011-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-25011-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25010-1
Online ISBN: 978-3-642-25011-8
eBook Packages: Computer ScienceComputer Science (R0)