Abstract
We propose a bootstrap-based method for normal estimation on an unorganised point set. Experimental results show that the accuracy of the method is comparable with the accuracy of the widely used Principal Component Analysis. The main advantage of our approach is that the variance of the normals over the bootstrap samples can be used as a confidence value for the estimated normal. In a proposed application, we use the confidence values to construct a bilateral Gaussian filter for normal smoothing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ramli, A., Ivrissimtzis, I.: Bootstrap test error estimations of polynomial fittings in surface reconstruction. In: Proceedings of VMV, pp. 101–112 (2009)
Bae, K.-H., Belton, D., Lichti, D.D.: A closed-form expression of the positional uncertainty for 3d point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 577–590 (2009)
Cabrera, J., Meer, P.: Unbiased estimation of ellipses by bootstrapping. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7), 752–756 (1996)
Dey, T.K., Li, G., Sun, J.: Normal estimation for point clouds: A comparison study for a voronoi based method. In: Proceeding of SoPBG, pp. 39–46 (2005)
Gopi, M., Krishnan, S., Silva, C.T.: Surface reconstruction based on lower dimensional localized Delaunay triangulation. Computer Graphics Forum 19(3), 467–478 (2000)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of SIGGRAPH, pp. 71–78 (1992)
Hu, G., Xu, J., Miao, L., Peng, Q.-S.: Bilateral estimation of vertex normal for point-sampled models. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 758–768. Springer, Heidelberg (2005)
Jones, T.R., Durand, F., Zwicker, M.: Normal improvement for point rendering. IEEE Computer Graphics and Applications 24(4), 53–56 (2004)
Lange, C., Polthier, K.: Anisotropic smoothing of point sets. Computer Aided Geometric Design 22(7), 680–692 (2005)
Li, B., Schnabel, R., Klein, R., Cheng, Z., Dang, G., Jin, S.: Robust normal estimation for point clouds with sharp features. Computers & Graphics 34(2), 94–106 (2010)
Mitra, N.J., Nguyen, A., Guibas, L.: Estimating surface normals in noisy point cloud data. Special Issue of International Journal of Computational Geometry and Applications 14(4-5), 261–276 (2004)
Pauly, M., Keiser, R., Kobbelt, L., Gross, M.: Shape modeling with point-sampled geometry. ACM Transactions on Graphics 22(3), 641–650 (2003)
Pauly, M., Kobbelt, L.P., Gross, M.: Point-based multiscale surface representation. ACM Transactions on Graphics 25(2), 177–193 (2006)
Qin, H., Yang, J., Zhu, Y.: Nonuniform bilateral filtering for point sets and surface attributes. The Visual Computer 24, 1067–1074 (2008)
Yoon, M., Lee, Y., Lee, S., Ivrissimtzis, I., Seidel, H.-P.: Surface and normal ensembles for surface reconstruction. Computer Aided Design 39(5), 408–420 (2007)
Zhang, L., Liu, L., Gotsman, C., Huang, H.: Mesh reconstruction by meshless denoising and parameterization. Computers & Graphics 34(3), 198–208 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ramli, A., Ivrissimtzis, I. (2012). Bootstrap-Based Normal Reconstruction. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-27413-8_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27412-1
Online ISBN: 978-3-642-27413-8
eBook Packages: Computer ScienceComputer Science (R0)