Skip to main content

Bootstrap-Based Normal Reconstruction

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

  • 3375 Accesses

Abstract

We propose a bootstrap-based method for normal estimation on an unorganised point set. Experimental results show that the accuracy of the method is comparable with the accuracy of the widely used Principal Component Analysis. The main advantage of our approach is that the variance of the normals over the bootstrap samples can be used as a confidence value for the estimated normal. In a proposed application, we use the confidence values to construct a bilateral Gaussian filter for normal smoothing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ramli, A., Ivrissimtzis, I.: Bootstrap test error estimations of polynomial fittings in surface reconstruction. In: Proceedings of VMV, pp. 101–112 (2009)

    Google Scholar 

  2. Bae, K.-H., Belton, D., Lichti, D.D.: A closed-form expression of the positional uncertainty for 3d point clouds. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(4), 577–590 (2009)

    Article  Google Scholar 

  3. Cabrera, J., Meer, P.: Unbiased estimation of ellipses by bootstrapping. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7), 752–756 (1996)

    Article  Google Scholar 

  4. Dey, T.K., Li, G., Sun, J.: Normal estimation for point clouds: A comparison study for a voronoi based method. In: Proceeding of SoPBG, pp. 39–46 (2005)

    Google Scholar 

  5. Gopi, M., Krishnan, S., Silva, C.T.: Surface reconstruction based on lower dimensional localized Delaunay triangulation. Computer Graphics Forum 19(3), 467–478 (2000)

    Article  Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  7. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of SIGGRAPH, pp. 71–78 (1992)

    Google Scholar 

  8. Hu, G., Xu, J., Miao, L., Peng, Q.-S.: Bilateral estimation of vertex normal for point-sampled models. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 758–768. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Jones, T.R., Durand, F., Zwicker, M.: Normal improvement for point rendering. IEEE Computer Graphics and Applications 24(4), 53–56 (2004)

    Article  Google Scholar 

  10. Lange, C., Polthier, K.: Anisotropic smoothing of point sets. Computer Aided Geometric Design 22(7), 680–692 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, B., Schnabel, R., Klein, R., Cheng, Z., Dang, G., Jin, S.: Robust normal estimation for point clouds with sharp features. Computers & Graphics 34(2), 94–106 (2010)

    Article  Google Scholar 

  12. Mitra, N.J., Nguyen, A., Guibas, L.: Estimating surface normals in noisy point cloud data. Special Issue of International Journal of Computational Geometry and Applications 14(4-5), 261–276 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pauly, M., Keiser, R., Kobbelt, L., Gross, M.: Shape modeling with point-sampled geometry. ACM Transactions on Graphics 22(3), 641–650 (2003)

    Article  Google Scholar 

  14. Pauly, M., Kobbelt, L.P., Gross, M.: Point-based multiscale surface representation. ACM Transactions on Graphics 25(2), 177–193 (2006)

    Article  Google Scholar 

  15. Qin, H., Yang, J., Zhu, Y.: Nonuniform bilateral filtering for point sets and surface attributes. The Visual Computer 24, 1067–1074 (2008)

    Article  Google Scholar 

  16. Yoon, M., Lee, Y., Lee, S., Ivrissimtzis, I., Seidel, H.-P.: Surface and normal ensembles for surface reconstruction. Computer Aided Design 39(5), 408–420 (2007)

    Article  Google Scholar 

  17. Zhang, L., Liu, L., Gotsman, C., Huang, H.: Mesh reconstruction by meshless denoising and parameterization. Computers & Graphics 34(3), 198–208 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramli, A., Ivrissimtzis, I. (2012). Bootstrap-Based Normal Reconstruction. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy