Skip to main content

An Experimental Study of Different Ordinal Regression Methods and Measures

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Abstract

In this paper, an experimental study of different ordinal regression methods and measures is presented. The first objective is to gather the results of a considerably high number of methods, datasets and measures, since there are not many previous comparative studies of this kind in the literature. The second objective is to detect the redundancy between the evaluation measures used for ordinal regression. The results obtained present the maximum MAE (maximum of the mean absolute error of the difference between the true and the predicted ranks of the worst classified class) as a very interesting alternative for ordinal regression, being the less uncorrelated with respect to the rest of measures. Additionally, SVOREX and SVORIM are found to yield very good performance when the objective is to minimize this maximum MAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agresti, A.: Categorical Data Analysis, 2nd edn. John Wiley and Sons (2002)

    Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

  3. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 2009), Pisa, Italy (December 2009)

    Google Scholar 

  4. Campbell, M., Donner, A.: Classification efficiency of multinomial logistic regression relative to ordinal logistic regression. Journal of the American Statistical Association 84, 587–591 (1989)

    Article  MathSciNet  Google Scholar 

  5. Cardoso, J.S., da Costa, J.F.P.: Learning to classify ordinal data: The data replication method. Journal of Machine Learning Research 8, 1393–1429 (2007)

    MATH  Google Scholar 

  6. Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. Journal of Machine Learning Research 6, 1019–1041 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Computation 19(3), 792–815 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Crammer, K., Singer, Y.: Online ranking by projecting. Neural Computation 17(1), 145–175 (2005)

    Article  MATH  Google Scholar 

  10. Cruz-Ramírez M., Hervás-Martínez, C., Sánchez-Monedero, J., Gutiérrez, P.A.: A preliminary study of ordinal metrics to guide a multi-objective evolutionary algorithm. In: Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011), Córdoba, Spain, pp. 1176–1181 (2011)

    Google Scholar 

  11. Frank, E., Hall, M.: A Simple Approach to Ordinal Classification. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, p. 145. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines. IEEE Transaction on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  13. Kendall, M.G.: Rank Correlation Methods. Hafner Press, New York (1962)

    Google Scholar 

  14. Kotsiantis, S.B., Pintelas, P.E.: A Cost Sensitive Technique for Ordinal Classification Problems. In: Vouros, G.A., Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 220–229. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Kramer, S., Widmer, G., Pfahringer, B., de Groeve, M.: Prediction of Ordinal Classes using Regression Trees. In: Ohsuga, S., Raś, Z.W. (eds.) ISMIS 2000. LNCS (LNAI), vol. 1932, pp. 426–434. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Li, L., Lin, H.T.: Ordinal Regression by Extended Binary Classification. In: Advances in Neural Information Processing Systems, vol. 19, pp. 865–872 (2007)

    Google Scholar 

  17. McCullagh, P.: Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society 42(2), 109–142 (1980)

    MathSciNet  MATH  Google Scholar 

  18. McCullagh, P., Nelder, J.A.: Generalized Linear Models. Monographs on Statistics and Applied Probability, 2nd edn. Chapman & Hall,CRC (1989)

    Google Scholar 

  19. PASCAL: Pascal (Pattern Analysis, Statistical Modelling and Computational Learning) machine learning benchmarks repository (2011), http://mldata.org/

  20. Shashua, A., Levin, A.: Ranking with large margin principle: Two approaches. In: Advances in Neural Information Processing Systems, vol. 15, pp. 937–944. MIT Press, Cambridge (2003)

    Google Scholar 

  21. Verwaeren, J., Waegeman, W., De Baets, B.: Learning partial ordinal class memberships with kernel-based proportional odds models. Computational Statistics & Data Analysis (2011) (in press) doi:10.1016/j.csda.2010.12.007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutiérrez, P.A., Pérez-Ortiz, M., Fernández-Navarro, F., Sánchez-Monedero, J., Hervás-Martínez, C. (2012). An Experimental Study of Different Ordinal Regression Methods and Measures. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28931-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28930-9

  • Online ISBN: 978-3-642-28931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy