Abstract
This paper proposes a new simulation approach for investigating phenomena such as norm emergence and internalization in large groups of learning agents. We define a probabilistic defeasible logic instantiating Dung’s argumentation framework. Rules of this logic are attached to probabilities and describe the agents’ minds and behaviour. We thus adopt the paradigm of reinforcement learning over this probability distribution to allow agents to adapt to their environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrighetto, G., Campennì, M., Cecconi, F., Conte, R.: The complex loop of norm emergence: A simulation model. In: Simulating Interacting Agents and Social Phenomena. Springer (2010)
Andrighetto, G., Villatoro, D., Conte, R.: Norm internalization in artificial societies. AI Commun. 23(4), 325–339 (2010)
Davidsson, P.: Multi Agent Based Simulation: Beyond Social Simulation. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 97–107. Springer, Heidelberg (2001)
Davidsson, P.: Agent based social simulation: A computer science view. J. Artificial Societies and Social Simulation 5(1) (2002)
Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358 (1995)
Dung, P.M., Thang, P.M.: Towards (probabilistic) argumentation for jury-based dispute resolution. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) COMMA. Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 171–182. IOS Press (2010)
Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic. In: 10th International Conference on Artificial Intelligence and Law, pp. 25–34. ACM Press (2005)
Haenni, R.: Probabilistic argumentation. J. Applied Logic 7(2), 155–176 (2009)
Prakken, H.: An abstract framework for argumentation with structured arguments. Argument and Computation 1(2), 93–124 (2011)
Riveret, R., Prakken, H., Rotolo, A., Sartor, G.: Heuristics in argumentation: A game theory investigation. In: COMMA, pp. 324–335 (2008)
Riveret, R., Rotolo, A., Sartor, G., Prakken, H., Roth, B.: Success chances in argument games: a probabilistic approach to legal disputes. In: Proceeding of the 2007 Conference on Legal Knowledge and Information Systems: JURIX 2007: The Twentieth Annual Conference, pp. 99–108. IOS Press, Amsterdam (2007)
Roth, B., Riveret, R., Rotolo, A., Governatori, G.: Strategic argumentation: a game theoretical investigation. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, ICAIL 2007, pp. 81–90. ACM, New York (2007)
Savarimuthu, B.T.R., Cranefield, S.: Norm creation, spreading and emergence: A survey of simulation models of norms in multi-agent systems. Multiagent and Grid Systems 7(1), 21–54 (2011)
Shoham, Y., Powers, R., Grenager, T.: If multi-agent learning is the answer, what is the question? Artificial Intelligence 171(7), 365–377 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Riveret, R., Rotolo, A., Sartor, G. (2012). Norms and Learning in Probabilistic Logic-Based Agents. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds) Deontic Logic in Computer Science. DEON 2012. Lecture Notes in Computer Science(), vol 7393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31570-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-31570-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31569-5
Online ISBN: 978-3-642-31570-1
eBook Packages: Computer ScienceComputer Science (R0)