Abstract
Clustering is an important data mining task and has been explored extensively by a number of researchers for different application areas, such as text application and bioinformatics data. In this paper we propose the use of a novel algorithm for clustering data that we call hybrid particle swarm optimization with mutation (HPSOM), which is based on PSO. The HPSOM basically uses PSO and incorporates the mutation process often used in GA to allow the search to escape from local optima. It is shown how the PSO/HPSOM can be used to find the centroids of a user-specified number of clusters. The new algorithm is evaluated on five benchmark data sets. The proposed method is compared with the K-means (KM) clustering technique and the standard PSO algorithm. The results show that the algorithm is efficient and produces compact clusters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jiawei, H., Micheline, K.: Data Mining, Conecpts and Techniques. Morgan Kaufmann Publishers (2001)
Kao, Y.T., Zahara, E., Kao, I.W.: A hybridized approach to data clustering. Expert Systems with Applications 34(3), 1754–1762 (2008)
Feng, H.M., Chen, C.Y., Ye, F.: Evolutionary fuzzy particle swarmoptimization vector quantization learning scheme in image compression. Expert Systems with Applications 32(1), 213–222 (2007)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE Internal Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)
Esmin, A.A.A., Lambert-Torres, G., Zambroni de Souza, A.C.: A Hybrid Particle Swarm Optimization Applied to Loss Power Minimization. IEEE Transactions on Power Systems 20(2), 859–866 (2005)
Esmin, A.A.A., Lambert-Torres, G.: Fitting Fuzzy Membership Functions using Hybrid Particle Swarm Optimization. In: 2006 IEEE World Congress on Computational Intelligence & IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2006, pp. 9954–9961. IEEE Press, Vancouver (2006)
Miranda, V., Fonseca, N.: EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems. In: Proc. of the Asia Pacific IEEE/PES Transmission and Distribution Conference and Exhibition, vol. 2, pp. 745–750 (2002)
Fan, S.S., Liang, Y., Zahara, E.: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions. Engineering Optimization 36(4), 401–418 (2004)
Shi, Y., Eberhart, R.: Parameter Selection in Particle Swarm Optimization. In: Proc. 7th Annual Conference on Evolutionary Programming, pp. 591–600 (1998)
Angeline, P.: Evolutionary Optimization Versus Particle Swarm Optimization Philosophy and Performance Differences. In: Proc. 7th Annual Conference on Evolutionary Programming, pp. 601–610 (1998)
Van den Bergh, F., Engelbrecht, A.P.: A New Locally Convergent Particle Swarm Optimiser. In: Proc. of the IEEE International Conference on Systems, Man and Cybernetics, Hammamet, Tunisia (October 2002)
Løvbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid Particle Swarm Optimiser with Breeding and Subpopulations. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO), USA (July 2001)
van der Merwe, D.W., Engelbrecht, A.P.: Data Clustering using Particle Swarm Optimization. In: Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC 2003), pp. 215–220. IEEE Computer Society, Caribella (2003)
Esmin, A.A.A., Pereira, D.L., Araujo, F.P.A.: Study of Different Approach to Clustering Data by Using The Particle Swarm Optimization Algorithm. In: 2008 IEEE Congress on Evolutionary Computation (IEEE CEC 2008), Proceedings of IEEE Congress on Evolutionary Computation, Hong Kong, pp. 1817–1822 (2008)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, Department of Information and Computer Science, Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Esmin, A.A.A., Matwin, S. (2012). Data Clustering Using Hybrid Particle Swarm Optimization. In: Yin, H., Costa, J.A.F., Barreto, G. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2012. IDEAL 2012. Lecture Notes in Computer Science, vol 7435. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32639-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-32639-4_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32638-7
Online ISBN: 978-3-642-32639-4
eBook Packages: Computer ScienceComputer Science (R0)