Skip to main content

A Comparative Study of Three GPU-Based Metaheuristics

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7492))

Included in the following conference series:

Abstract

In this paper we compare GPU-based implementations of three metaheuristics: Particle Swarm Optimization, Differential Evolution, and Scatter Search. A GPU-based implementation, obviously, does not change the general properties of the algorithms. As well, we give for granted that GPU-based implementation of both algorithm and fitness function produces a significant speed-up with respect to a sequential implementation. Accordingly, the main goal of this work has been to fairly assess the efficiency of the GPU-based implementations of the three metaheuristics, based on the statistical analysis of the results they obtain in optimizing a benchmark of twenty functions within a prefixed limited time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford (1999)

    Google Scholar 

  2. Das, S., Suganthan, P.: Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

    Article  Google Scholar 

  3. de Veronese, L., Krohling, R.: Swarm’s flight: Accelerating the particles using C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 3264–3270 (2009)

    Google Scholar 

  4. de Veronese, L., Krohling, R.: Differential evolution algorithm on the GPU with C-CUDA. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

    Google Scholar 

  5. Duarte, A., Martí, R., Glover, F., Gortázar, F.: Hybrid scatter tabu search for unconstrained global optimization. Annals of Operations Research 183(1), 95–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

    Google Scholar 

  7. Glover, F.: Heuristics for integer programming using surrogate constraints. Decision Sciences 8(1), 156–166 (1977)

    Article  Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proc. IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  9. Krömer, P., Snåšel, V., Platoš, J., Abraham, A.: Many-threaded implementation of differential evolution for the CUDA platform. In: Proc. 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1595–1602. ACM (2011)

    Google Scholar 

  10. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

    Google Scholar 

  11. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture. Information Sciences 181(20), 4642–4657 (2011)

    Article  Google Scholar 

  12. Mussi, L., Nashed, Y.S.G., Cagnoni, S.: GPU-based asynchronous particle swarm optimization. In: Proc. 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1555–1562. ACM (2011)

    Google Scholar 

  13. Nashed, Y.S.G., Ugolotti, R., Mesejo, P., Cagnoni, S.: libCudaOptimize: an Open Source Library of GPU-based Metaheuristics. In: Proc. Genetic and Evolutionary Computation Conference, GECCO 2012 (in press, 2012)

    Google Scholar 

  14. nVIDIA Corporation: nVIDIA CUDA Programming Guide v. 4.0. (2011)

    Google Scholar 

  15. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence 1(1), 33–57 (2007)

    Article  Google Scholar 

  16. Storn, R., Price, K.: Differential Evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute (1995)

    Google Scholar 

  17. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Natural Computing, 1–50 (2005)

    Google Scholar 

  18. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1980–1987 (2004)

    Google Scholar 

  19. Wets, F.J., Solis, R.J.: Minimization by random search techniques. Mathematics of Operations Research 6(1), 19–30 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proc. IEEE Congress on Evolutionary Computation, pp. 1493–1500 (2009)

    Google Scholar 

  21. Zhu, W.: Massively parallel differential evolution–pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems. Journal of Global Optimization 50(3), 417–437 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nashed, Y.S.G., Mesejo, P., Ugolotti, R., Dubois-Lacoste, J., Cagnoni, S. (2012). A Comparative Study of Three GPU-Based Metaheuristics. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32964-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32964-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32963-0

  • Online ISBN: 978-3-642-32964-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy