Abstract
Concept drift is an important concern for any data analysis scenario involving temporally ordered data. In the last decade Process mining arose as a discipline that uses the logs of information systems in order to mine, analyze and enhance the process dimension. There is very little work dealing with concept drift in process mining. In this paper we present the first online mechanism for detecting and managing concept drift, which is based on abstract interpretation and sequential sampling, together with recent learning techniques on data streams.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: SDM. SIAM (2007)
Bifet, A., Gavaldà, R.: Adaptive Learning from Evolving Data Streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009)
Bifet, A., Gavaldà, R.: Mining frequent closed trees in evolving data streams. Intell. Data Anal. 15(1), 29–48 (2011)
Bifet, A., Holmes, G., Pfahringer, B., Gavaldà, R.: Mining frequent closed graphs on evolving data streams. In: Apté, C., Ghosh, J., Smyth, P. (eds.) KDD, pp. 591–599. ACM (2011)
Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P., Žliobaitė, I.e., Pechenizkiy, M.: Handling Concept Drift in Process Mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011)
Jagadeesh Chandra Bose, R.P.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics. PhD thesis, Eindhoven University of Technology (2012)
Carmona, J., Cortadella, J.: Process Mining Meets Abstract Interpretation. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 184–199. Springer, Heidelberg (2010)
Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded Petri nets. IEEE Trans. on Computers 59(3), 371–384 (2009)
Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: 2nd Int. Symposium on Programming, Paris, France, pp. 106–130 (1976)
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pp. 238–252. ACM Press (1977)
Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proc. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pp. 84–97. ACM Press, New York (1978)
Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)
Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static Analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009)
Miné, A.: The octagon abstract domain. In: IEEE Analysis, Slicing and Tranformation, pp. 310–319. IEEE CS Press (October 2001)
Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4) (1989)
van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)
van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)
van der Aalst, W.M.P., Günther, C.W.: Finding structure in unstructured processes: The case for process mining. In: Basten, T., Juhás, G., Shukla, S.K. (eds.) ACSD, pp. 3–12. IEEE Computer Society (2007)
van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Genetic Process Mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 48–69. Springer, Heidelberg (2005)
Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: CIDM, pp. 310–317 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Carmona, J., Gavaldà, R. (2012). Online Techniques for Dealing with Concept Drift in Process Mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-34156-4_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34155-7
Online ISBN: 978-3-642-34156-4
eBook Packages: Computer ScienceComputer Science (R0)