Skip to main content

What Else Can Be Extracted from Ontologies? Influence Rules

  • Conference paper
Software and Data Technologies (ICSOFT 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 303))

Included in the following conference series:

  • 548 Accesses

Abstract

A method for extracting new implicit knowledge from ontologies by using an inductive/deductive approach is presented. The new extracted knowledge takes the form of If-Then rules annotated with a weight. Such rules, termed Influence Rules, specify how the values of the properties bound to a collection of concepts may influence the values of the properties of another concept.The technique, that combines data mining and link analysis, is completely general and applicable to whatever domain. The paper reports the methods and the algorithms supporting the process of mining the rules out of the ontology, and discusses its application to real data from the economic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baglioni, M., Bellandi, A., Furletti, B., Spinsanti, L., Turini, F.: Ontology-based business plan classification. In: Proceedings of EDOC 2008, pp. 365–371 (2008)

    Google Scholar 

  2. Baglioni, M., Furletti, B., Turini, F.: DrC4.5: Improving C4.5 by means of prior knowledge. In: Proceedings of SAC 2005, pp. 474–481 (2005)

    Google Scholar 

  3. Bellandi, A., Furletti, B., Grossi, V., Romei, A.: Pushing Constraints in Association Rule Mining: An Ontology-Based Approach. In: Proceedings of the IADIS International Conference WWW/INTERNET (2007)

    Google Scholar 

  4. Bellini, L.: YaDT-DRb: Yet another Decision Tree Domain Rule builder. Master’s Thesis, University of Pisa, Italy (2007)

    Google Scholar 

  5. Berners-Lee, T., Fischetti, M.: Weaving the Web. Harper, San Francisco (1997)

    Google Scholar 

  6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: The 7th International World Wide Web Conference, Brisbane, Australia (1998)

    Google Scholar 

  7. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: Conquest: a constraint-based querying system for exploratory pattern discovery. In: ICDE (2006)

    Google Scholar 

  8. Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervides Learning of Semantic Relations for Molecular Biology Ontologies. In: Ontology Learning and Population: Bridging the Gap between Text and Knowledge (2008)

    Google Scholar 

  9. Elsayed, A., El-Beltagy, S.R., Rafea, M., Hegazy, O.: Applying data mining for ontology building. In: Proceedings of the 42nd Annual Conference on Statistics, Computer Science, and Operations Research (2007)

    Google Scholar 

  10. Furletti, B.: Ontology-Driven Knowledge Discovery. Ph.D. Thesis: IMT-Lucca (2009), http://www.di.unipi.it/~furletti/papers/PhDThesisFurletti2009.pdf

  11. Furletti, B., Turini, F.: Knowledge Discovery in Ontologies. To Appear in: IDA Journal 16(3) (2012)

    Google Scholar 

  12. Geller, J., Zhou, X., Prathipati, K., Kanigiluppai, S., Chen, X.: Raising data for improved support in rule mining: How to raise and how far to raise. Intelligent Data Analysis 9(4), 397–415 (2005)

    Google Scholar 

  13. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)

    Google Scholar 

  14. MUSING Project (2006), http://www.musing.eu/

  15. Parekh, V., Gwo, J., Finin, T.: Mining Domain Specific Texts and Glossaries to Evaluate and Enrich Domain Ontologies. In: Proceedings of the International Conference of Information and Knowledge Engineering (2004)

    Google Scholar 

  16. Pinkston, J., Undercoffer, J., Joshi, A., Finin, T.: A Target-Centric Ontology for Intrusion Detection. In: Proceedings of the Workshop on Ontologies in Distributed Systems (2003)

    Google Scholar 

  17. Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann P. (1993)

    Google Scholar 

  18. Singh, S., Vajirkar, P., Lee, Y.: Context-Based Data Mining Using Ontologies. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 405–418. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. UCI KDD Archive. Data of The Third International Knowledge Discovery and Data Mining Tools Competition (KDD CUP 1999) (1999), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

  20. Vela, M., Declerck, T.: Heuristics for Automated Text-Based Shallow Ontology Generation. In: Proceedings of the International Semantic Web Conference, Posters & Demos (2008)

    Google Scholar 

  21. W3C Community, OWL Web Ontology Language Overview (2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/

  22. W3C Community, RDF Vocabulary Description Language 1.0: RDF Schema (2004), http://www.w3.org/TR/rdf-schema/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Furletti, B., Turini, F. (2013). What Else Can Be Extracted from Ontologies? Influence Rules. In: Escalona, M.J., Cordeiro, J., Shishkov, B. (eds) Software and Data Technologies. ICSOFT 2011. Communications in Computer and Information Science, vol 303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36177-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36177-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36176-0

  • Online ISBN: 978-3-642-36177-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy