Abstract
A method for extracting new implicit knowledge from ontologies by using an inductive/deductive approach is presented. The new extracted knowledge takes the form of If-Then rules annotated with a weight. Such rules, termed Influence Rules, specify how the values of the properties bound to a collection of concepts may influence the values of the properties of another concept.The technique, that combines data mining and link analysis, is completely general and applicable to whatever domain. The paper reports the methods and the algorithms supporting the process of mining the rules out of the ontology, and discusses its application to real data from the economic field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baglioni, M., Bellandi, A., Furletti, B., Spinsanti, L., Turini, F.: Ontology-based business plan classification. In: Proceedings of EDOC 2008, pp. 365–371 (2008)
Baglioni, M., Furletti, B., Turini, F.: DrC4.5: Improving C4.5 by means of prior knowledge. In: Proceedings of SAC 2005, pp. 474–481 (2005)
Bellandi, A., Furletti, B., Grossi, V., Romei, A.: Pushing Constraints in Association Rule Mining: An Ontology-Based Approach. In: Proceedings of the IADIS International Conference WWW/INTERNET (2007)
Bellini, L.: YaDT-DRb: Yet another Decision Tree Domain Rule builder. Master’s Thesis, University of Pisa, Italy (2007)
Berners-Lee, T., Fischetti, M.: Weaving the Web. Harper, San Francisco (1997)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: The 7th International World Wide Web Conference, Brisbane, Australia (1998)
Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: Conquest: a constraint-based querying system for exploratory pattern discovery. In: ICDE (2006)
Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervides Learning of Semantic Relations for Molecular Biology Ontologies. In: Ontology Learning and Population: Bridging the Gap between Text and Knowledge (2008)
Elsayed, A., El-Beltagy, S.R., Rafea, M., Hegazy, O.: Applying data mining for ontology building. In: Proceedings of the 42nd Annual Conference on Statistics, Computer Science, and Operations Research (2007)
Furletti, B.: Ontology-Driven Knowledge Discovery. Ph.D. Thesis: IMT-Lucca (2009), http://www.di.unipi.it/~furletti/papers/PhDThesisFurletti2009.pdf
Furletti, B., Turini, F.: Knowledge Discovery in Ontologies. To Appear in: IDA Journal 16(3) (2012)
Geller, J., Zhou, X., Prathipati, K., Kanigiluppai, S., Chen, X.: Raising data for improved support in rule mining: How to raise and how far to raise. Intelligent Data Analysis 9(4), 397–415 (2005)
Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)
MUSING Project (2006), http://www.musing.eu/
Parekh, V., Gwo, J., Finin, T.: Mining Domain Specific Texts and Glossaries to Evaluate and Enrich Domain Ontologies. In: Proceedings of the International Conference of Information and Knowledge Engineering (2004)
Pinkston, J., Undercoffer, J., Joshi, A., Finin, T.: A Target-Centric Ontology for Intrusion Detection. In: Proceedings of the Workshop on Ontologies in Distributed Systems (2003)
Quinlan, J.: C4.5: programs for machine learning. Morgan Kaufmann P. (1993)
Singh, S., Vajirkar, P., Lee, Y.: Context-Based Data Mining Using Ontologies. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 405–418. Springer, Heidelberg (2003)
UCI KDD Archive. Data of The Third International Knowledge Discovery and Data Mining Tools Competition (KDD CUP 1999) (1999), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Vela, M., Declerck, T.: Heuristics for Automated Text-Based Shallow Ontology Generation. In: Proceedings of the International Semantic Web Conference, Posters & Demos (2008)
W3C Community, OWL Web Ontology Language Overview (2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/
W3C Community, RDF Vocabulary Description Language 1.0: RDF Schema (2004), http://www.w3.org/TR/rdf-schema/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Furletti, B., Turini, F. (2013). What Else Can Be Extracted from Ontologies? Influence Rules. In: Escalona, M.J., Cordeiro, J., Shishkov, B. (eds) Software and Data Technologies. ICSOFT 2011. Communications in Computer and Information Science, vol 303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36177-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-36177-7_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36176-0
Online ISBN: 978-3-642-36177-7
eBook Packages: Computer ScienceComputer Science (R0)