Abstract
We have developed finite element modelling techniques to semi-automatically generate personalised biomechanical models of the human left ventricle (LV) based on cardiac magnetic resonance images. Geometric information of the LV throughout the cardiac cycle was derived via semi-automatic segmentation using non-rigid image registration with a pre-segmented image. A reference finite element mechanics model was automatically fitted to the segmented LV endocardial and epicardial surface data at diastasis. Passive and contractile myocardial mechanical properties were then tuned to best match the segmented surface data at end-diastole and end-systole, respectively. Global and regional indices of myocardial mechanics, including muscle fibre stress and extension ratio were then quantified and analysed. This mechanics modelling framework was applied to a healthy human subject and a patient with non-ischaemic heart failure. Comparison of the estimated passive stiffness and maximum activation level between the normal and diseased cases provided some preliminary insight into the changes in myocardial mechanical properties during heart failure. This automated approach enables minimally invasive personalised characterisation of cardiac mechanical function in health and disease. It also has the potential to elucidate the mechanisms of heart failure, and provide new quantitative diagnostic markers and therapeutic strategies for heart failure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xi, J., Lamata, P., Shi, W., Niederer, S., Land, S., Rueckert, D., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., Razavi, R., Smith, N.: An Automatic Data Assimilation Framework for Patient-Specific Myocardial Mechanical Parameter Estimation. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 392–400. Springer, Heidelberg (2011)
Imperiale, A., Chabiniok, R., Moireau, P., Chapelle, D.: Constitutive Parameter Estimation Methodology Using Tagged-MRI Data. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 409–417. Springer, Heidelberg (2011)
Chabiniok, R., Moireau, P., Lesault, P.-F., Rahmouni, A., Deux, J.-F., Chapelle, D.: Trials on Tissue Contractility Estimation from Cardiac Cine MRI Using a Biomechanical Heart Model. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 304–312. Springer, Heidelberg (2011)
Sermesant, M., Billet, F., Chabiniok, R., Mansi, T., Chinchapatnam, P., Moireau, P., Peyrat, J.-M., Rhode, K., Ginks, M., Lambiase, P., Arridge, S., Delingette, H., Sorine, M., Rinaldi, C.A., Chapelle, D., Razavi, R., Ayache, N.: Personalised Electromechanical Model of the Heart for the Prediction of the Acute Effects of Cardiac Resynchronisation Therapy. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 239–248. Springer, Heidelberg (2009)
Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A.J., Wright, G.A.: Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI. The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge, http://hdl.handle.net/10380/3070
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Underst. 61(1), 8–59 (1995)
OrdĂ¡s, S., Oubel, E., Leta, R., Carrera, F., Frangi, A.F.: A statistical shape model of the heart and its application to model-based segmentation. In: Proc. SPIE Medical Imaging, article no. 65111K (2004)
van Assen, H.C., Danilouchkine, M.G., Frangi, A.F., OrdĂ¡s, S., Westenberg, J.J.M., Reiber, J.H.C., Lelieveldt, B.P.F.: SPASM: A 3-D ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med. Imag. Anal. 10(2), 286–303 (2006)
Wang, V.Y.: Modelling In Vivo Cardiac Mechanics using MRI and FEM. PhD thesis. The University of Auckland, New Zealand (2011)
Wang, V.Y., Lam, H.I., Ennis, D.B., Cowan, B.R., Young, A.A., Nash, M.P.: Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med. Imag. Anal. 13(5), 773–784 (2009)
Nielsen, P.M.F., Le Grice, I.J., Smaill, B.H., Hunter, P.J.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260(4), H1365–H1378 (1991)
Honda, H., Nakaya, S., Kamada, H., Hasegawa, H., Demachi, J., Chikama, H., Sugimura, K., Yamamoto, Y., Kumasaka, N., Takita, T., Ikeda, J., Kanai, H., Koiwa, Y., Shirato, K.: Non-invasive estimation of human left ventricular end-diastolic pressure. Med. Eng. Phys. 6, 485–488 (1998)
McKay, R.G., Aroesty, J.M., Heller, G.V., Royal, H.D., Warren, S.E., Grossman, W.: Assessment of the end-systolic pressure-volume relationship in human beings with the use of a time-varying elastance model. Circ. 74, 97–104 (1986)
Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 43–55 (1991)
Hunter, P.J., McCulloch, A.D., ter Keurs, H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Bio. 69, 289–331 (1998)
Dou, J., Tseng, W.I., Reese, T.G., Wedeen, V.J.: Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magnet. Reson. Med. 50(1), 107–113 (2003)
Toussaint, N., Sermesant, M., Stoeck, C.T., Kozerke, S., Batchelor, P.G.: In vivo Human 3D Cardiac Fibre Architecture: Reconstruction Using Curvilinear Interpolation of Diffusion Tensor Images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 418–425. Springer, Heidelberg (2010)
Lombaert, H., Peyrat, J.-M., Fanton, L., Cheriet, F., Delingette, H., Ayache, N., Clarysse, P., Magnin, I., Croisille, P.: Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 207–213. Springer, Heidelberg (2012)
Wang, V.Y., Casta, C., Croisille, P., Clarysse, P., Zhu, Y.M., Cowan, B.R., Young, A.A., Nash, M.P.: Estimation of in vivo human myocardial fibre strain by integrating diffusion tensor and tagged MRI using FE modelling. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 46–49 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, V.Y. et al. (2013). Automated Personalised Human Left Ventricular FE Models to Investigate Heart Failure Mechanics. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-36961-2_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36960-5
Online ISBN: 978-3-642-36961-2
eBook Packages: Computer ScienceComputer Science (R0)