Abstract
Semi-global matching (SGM) is a technique of choice for dense stereo estimation in current industrial driver-assistance systems due to its real-time processing capability and its convincing performance. In this paper we introduce iSGM as a new cost integration concept for semi-global matching. In iSGM, accumulated costs are iteratively evaluated and intermediate disparity results serve as input to generate semi-global distance maps. This novel data structure supports fast analysis of spatial disparity information and allows for reliable search space reduction in consecutive cost accumulation. As a consequence horizontal costs are stabilized which improves the robustness of the matching result. We demonstrate the superiority of this iterative integration concept against a standard configuration of semi-global matching and compare our results to current state-of-the-art methods on the KITTI Vision Benchmark Suite.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ernst, I., Hirschmüller, H.: Mutual Information Based Semi-Global Stereo Matching on the GPU. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 228–239. Springer, Heidelberg (2008)
Gehrig, S.K., Eberli, F., Meyer, T.: A Real-Time Low-Power Stereo Vision Engine Using Semi-Global Matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI Vision Benchmark Suite. In: Proc. Computer Vision Pattern Recognition, CVPR (2012)
Geiger, A., Roser, M., Urtasun, R.: Efficient Large-Scale Stereo Matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)
Gong, M., Yang, Y.-H.: Fast stereo matching using reliability-based dynamic programming and consistency constraints. In: Proc. Int. Conf. Computer Vision (ICCV), vol. 1, pp. 610–617 (2003)
Hermann, S., Klette, R.: Evaluation of a New Coarse-to-Fine Strategy for Fast Semi-Global Stereo Matching. In: Ho, Y.-S. (ed.) PSIVT 2011, Part I. LNCS, vol. 7087, pp. 395–406. Springer, Heidelberg (2011)
Hermann, S., Morales, S., Vaudrey, T., Klette, R.: Illumination Invariant Cost Functions in Semi-Global Matching. In: Koch, R., Huang, F. (eds.) ACCV Workshops 2010, Part II. LNCS, vol. 6469, pp. 245–254. Springer, Heidelberg (2011)
Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proc. IEEE Int. Conf. Computer Vision Pattern Recognition (CVPR), vol. 2, pp. 807–814 (2005)
Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Analysis Machine Intelligence 31, 1582–1599 (2009)
Meister, S., Jähne, B., Kondermann, D.: Outdoor stereo camera system for the generation of real-world benchmark data sets. Optical Engineering 51, paper 021107, 6 p. (2012)
Ohta, Y., Kanade, T.: Stereo by two-level dynamic programming. In: Proc. Int. Joint Conf. Artificial Intelligence (IJCAI), vol. 2, pp. 1120–1126 (1985)
Pantillie, C., Nedevschi, S.: SORT-SGM: Subpixel optimized real-time semiglobal matching for intelligent vehicles. IEEE Trans. Vehicular Technology 61, 369–376 (2012)
Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. In: Proc. IEEE Intelligent Vehicles Symposium (IV) (2012) (to appear)
Shimizu, M., Okutomi, M.: An analysis of subpixel estimation error on area-based image matching. In: Proc. IEEE Conf. Digital Signal Processing (DSP), vol. 2, pp. 1239–1242 (2002)
Warren, H.S.: Hacker’s Delight, pp. 65–72. Addison-Wesley Longman, New York (2002)
Yamaguchi, K., Hazan, T., McAllester, D., Urtasun, R.: Continuous Markov random fields for robust stereo estimation, arXiv:1204.1393v1 (2012)
Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L 1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)
Zabih, R., Woodfill, J.: Non-Parametric Local Transforms for Computing Visual Correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hermann, S., Klette, R. (2013). Iterative Semi-Global Matching for Robust Driver Assistance Systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-37431-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37430-2
Online ISBN: 978-3-642-37431-9
eBook Packages: Computer ScienceComputer Science (R0)