Abstract
We present a new framework for predicting cognitive or other continuous-variable data from medical images. Current methods of probing the connection between medical images and other clinical data typically use voxel-based mass univariate approaches. These approaches do not take into account the multivariate, network-based interactions between the various areas of the brain and do not give readily interpretable metrics that describe how strongly cognitive function is related to neuroanatomical structure. On the other hand, high-dimensional machine learning techniques do not typically provide a direct method for discovering which parts of the brain are used for making predictions. We present a framework, based on recent work in sparse linear regression, that addresses both drawbacks of mass univariate approaches, while preserving the direct spatial interpretability that they provide. In addition, we present a novel optimization algorithm that adapts the conjugate gradient method for sparse regression on medical imaging data. This algorithm produces coefficients that are more interpretable than existing sparse regression techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. NeuroImage 11(6 pt. 1), 805–821 (2000); PMID: 10860804
Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)
Batmanghelich, N., Taskar, B., Davatzikos, C.: A general and unifying framework for feature construction, in image-based pattern classification. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 423–434. Springer, Heidelberg (2009)
Bertsekas, D.: On the goldstein-levitin-polyak gradient projection method. IEEE Transactions on Automatic Control 21(2), 174–184 (1976)
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)
Das, S.R., Avants, B.B., Grossman, M., Gee, J.C.: Registration based cortical thickness measurement. NeuroImage 45(3), 867–879 (2009); PMID: 19150502
Davatzikos, C., Resnick, S.M., Wu, X., Parmpi, P., Clark, C.M.: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage 41(4), 1220–1227 (2008)
Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1), 17–20 (2004)
Donoho, D.L.: De-noising by soft-thresholding. IEEE Transactions on Information Theory 41(3), 613–627 (1995)
Donoho, D.L.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. The Annals of Statistics 32(2), 407–499 (2004)
Franke, K., Ziegler, G., Klöppel, S., Gaser, C.: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage 50(3), 883–892 (2010)
Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1 (2010)
Ganesh, G., Burdet, E., Haruno, M., Kawato, M.: Sparse linear regression for reconstructing muscle activity from human cortical fMRI. NeuroImage 42(4), 1463–1472 (2008)
Goldstein, A.A.: Convex programming in Hilbert space. Bulletin of the American Mathematical Society 70(5), 709–710 (1964)
Lee, H., Lee, D.S., Kang, H., Kim, B.-N., Chung, M.K.: Sparse brain network recovery under compressed sensing. IEEE Transactions on Medical Imaging 30(5), 1154–1165
Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., van Belle, G., Fillenbaum, G., Mellits, E.D., Clark, C.: The consortium to establish a registry for Alzheimer’s disease (CERAD). Part i. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39(9), 1159–1165 (1989); PMID: 2771064
Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24(2), 227–234 (1995)
Schwartz, A., Polak, E.: Family of projected descent methods for optimization problems with simple bounds. Journal of Optimization Theory and Applications 92(1), 1–31 (1997)
Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)
Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996)
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(1), 91–108 (2005)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53(12), 4655–4666 (2007)
Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE 98(6), 948–958 (2010)
Wang, B., Pham, T.D.: MRI-based age prediction using hidden markov models. Journal of Neuroscience Methods 199(1), 140–145 (2011)
Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3), 515–534 (1937); PMID: 19377034
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kandel, B.M., Wolk, D.A., Gee, J.C., Avants, B. (2013). Predicting Cognitive Data from Medical Images Using Sparse Linear Regression. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)