Skip to main content

An Integrated 4D Vision and Visualisation System

  • Conference paper
Computer Vision Systems (ICVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7963))

Included in the following conference series:

  • 3434 Accesses

Abstract

This paper reports on a pilot system for reconstruction and visualisation of complex spatio-temporal scenes by integrating two different types of data: outdoor 4D data measured by a rotating multi-beam LIDAR sensor, and 4D models of moving actors obtained in a 4D studio. A typical scenario is an outdoor scene with multiple walking pedestrians. The LIDAR monitors the scene from a fixed position and provides a dynamic point cloud. This information is processed to build a 3D model of the environment and detect and track the pedestrians. Each of them is represented by a point cluster and a trajectory. A moving cluster is then substituted by a detailed 4D model created in the studio. The output is a geometrically reconstructed and textured scene with avatars that follow in real time the trajectories of the pedestrians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Behley, J., Steinhage, V., Cremers, A.: Performance of histogram descriptors for the classification of 3D laser range data in urban environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4391–4398 (May 2012)

    Google Scholar 

  2. Benedek, C., Molnár, D., Szirányi, T.: A dynamic MRF model for foreground detection on range data sequences of rotating multi-beam lidar. In: International Workshop on Depth Image Analysis, Tsukuba City, Japan. LNCS (2012)

    Google Scholar 

  3. Bernardini, F., Mittleman, J., et al.: The Ball-Pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 5(4), 349–359 (1999)

    Article  Google Scholar 

  4. Blajovici, C., Chetverikov, D., Jankó, Z.: 4D studio for future internet: Improving foreground-background segmentation. In: IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 559–564. IEEE (2012)

    Google Scholar 

  5. Duda, R., Hart, P.: Use of the hough transformation to detect lines and curves in pictures. Comm. of the ACM 15, 11–15 (1972)

    Article  Google Scholar 

  6. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Hapák, J., Jankó, Z., Chetverikov, D.: Real-time 4D reconstruction of human motion. In: Perales, F.J., Fisher, R.B., Moeslund, T.B. (eds.) AMDO 2012. LNCS, vol. 7378, pp. 250–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Kim, H., Guillemaut, J.Y., Takai, T., Sarim, M., Hilton, A.: Outdoor dynamic 3-d scene reconstruction. IEEE Trans. on Circuits and Systems for Video Technology 22(11), 1611–1622 (2012)

    Article  Google Scholar 

  9. Kitware: VTK Visualization Toolkit (2013), http://www.vtk.org

  10. Lai, K., Fox, D.: Object recognition in 3D point clouds using web data and domain adaptation. International Journal of Robotic Research 29(8), 1019–1037 (2010)

    Article  Google Scholar 

  11. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 150–162 (1994)

    Article  Google Scholar 

  12. Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proc. ACM SIGGRAPH, vol. 21, pp. 163–169 (1987)

    Google Scholar 

  13. Roth, P., Settgast, V., Widhalm, P., Lancelle, M., Birchbauer, J., Brandle, N., Havemann, S., Bischof, H.: Next-generation 3D visualization for visual surveillance. In: IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), August 30-September 2, pp. 343–348 (2011)

    Google Scholar 

  14. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 747–757 (2000)

    Article  Google Scholar 

  15. Wavefront Technologies: OBJ file format. Wikipedia, Wavefront.obj file (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benedek, C., Jankó, Z., Horváth, C., Molnár, D., Chetverikov, D., Szirányi, T. (2013). An Integrated 4D Vision and Visualisation System. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39402-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39401-0

  • Online ISBN: 978-3-642-39402-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy