Abstract
This paper reports on a pilot system for reconstruction and visualisation of complex spatio-temporal scenes by integrating two different types of data: outdoor 4D data measured by a rotating multi-beam LIDAR sensor, and 4D models of moving actors obtained in a 4D studio. A typical scenario is an outdoor scene with multiple walking pedestrians. The LIDAR monitors the scene from a fixed position and provides a dynamic point cloud. This information is processed to build a 3D model of the environment and detect and track the pedestrians. Each of them is represented by a point cluster and a trajectory. A moving cluster is then substituted by a detailed 4D model created in the studio. The output is a geometrically reconstructed and textured scene with avatars that follow in real time the trajectories of the pedestrians.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Behley, J., Steinhage, V., Cremers, A.: Performance of histogram descriptors for the classification of 3D laser range data in urban environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4391–4398 (May 2012)
Benedek, C., Molnár, D., Szirányi, T.: A dynamic MRF model for foreground detection on range data sequences of rotating multi-beam lidar. In: International Workshop on Depth Image Analysis, Tsukuba City, Japan. LNCS (2012)
Bernardini, F., Mittleman, J., et al.: The Ball-Pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 5(4), 349–359 (1999)
Blajovici, C., Chetverikov, D., Jankó, Z.: 4D studio for future internet: Improving foreground-background segmentation. In: IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 559–564. IEEE (2012)
Duda, R., Hart, P.: Use of the hough transformation to detect lines and curves in pictures. Comm. of the ACM 15, 11–15 (1972)
Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM 24, 381–395 (1981)
Hapák, J., Jankó, Z., Chetverikov, D.: Real-time 4D reconstruction of human motion. In: Perales, F.J., Fisher, R.B., Moeslund, T.B. (eds.) AMDO 2012. LNCS, vol. 7378, pp. 250–259. Springer, Heidelberg (2012)
Kim, H., Guillemaut, J.Y., Takai, T., Sarim, M., Hilton, A.: Outdoor dynamic 3-d scene reconstruction. IEEE Trans. on Circuits and Systems for Video Technology 22(11), 1611–1622 (2012)
Kitware: VTK Visualization Toolkit (2013), http://www.vtk.org
Lai, K., Fox, D.: Object recognition in 3D point clouds using web data and domain adaptation. International Journal of Robotic Research 29(8), 1019–1037 (2010)
Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 150–162 (1994)
Lorensen, W., Cline, H.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proc. ACM SIGGRAPH, vol. 21, pp. 163–169 (1987)
Roth, P., Settgast, V., Widhalm, P., Lancelle, M., Birchbauer, J., Brandle, N., Havemann, S., Bischof, H.: Next-generation 3D visualization for visual surveillance. In: IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), August 30-September 2, pp. 343–348 (2011)
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 747–757 (2000)
Wavefront Technologies: OBJ file format. Wikipedia, Wavefront.obj file (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Benedek, C., Jankó, Z., Horváth, C., Molnár, D., Chetverikov, D., Szirányi, T. (2013). An Integrated 4D Vision and Visualisation System. In: Chen, M., Leibe, B., Neumann, B. (eds) Computer Vision Systems. ICVS 2013. Lecture Notes in Computer Science, vol 7963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39402-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-39402-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39401-0
Online ISBN: 978-3-642-39402-7
eBook Packages: Computer ScienceComputer Science (R0)