Abstract
In this study, we propose an efficient non-rigid MR-TRUS deformable registration method to improve the accuracy of targeting suspicious locations during a 3D ultrasound (US) guided prostate biopsy. The proposed deformable registration approach employs the multi-channel modality independent neighbourhood descriptor (MIND) as the local similarity feature across the two modalities of MR and TRUS, and a novel and efficient duality-based convex optimization based algorithmic scheme is introduced to extract the deformations which align the two MIND descriptors. The registration accuracy was evaluated using 10 patient images by measuring the TRE of manually identified corresponding intrinsic fiducials in the whole gland and peripheral zone, and performance metrics (DSC, MAD and MAXD) for the apex, mid-gland and base of the prostate were also calculated by comparing two manually segmented prostate surfaces in the registered 3D MR and TRUS images. Experimental results show that the proposed method yielded an overall mean TRE of 1.74 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.
Chapter PDF
Similar content being viewed by others
Keywords
References
Canadian Cancer Society (2012), http://www.cancer.ca
National Cancer Institute (2012), http://www.cancer.gov
Cancer Research UK (2013), http://www.cancerresearchuk.org
Rifkin, M.: Ultrasound of the prostate: imaging in the diagnosis and therapy of prostatic disease. Lippincott-Raven Publishers (1997)
Norberg, M., Egevad, L., Holmberg, L., Sparén, P., Norlén, B., Busch, C.: The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50(4), 562–566 (1997)
Zakian, K.L., Sircar, K., Hricak, H., Chen, H.N., Shukla-Dave, A., Eberhardt, S., Muruganandham, M., Ebora, L., Kattan, M.W., Reuter, V.E., Scardino, P.T., Koutcher, J.A.: Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 234(3), 804–814 (2005)
Vilanova, J., Barceló-Vidal, C., Comet, J., Boada, M., Barceló, J., Ferrer, J., Albanell, J.: Usefulness of prebiopsy multifunctional and morphologic MRI combined with free-to-total prostate-specific antigen ratio in the detection of prostate cancer. American Journal of Roen 196, W715–W722 (2011)
Sonn, G.A., Natarajan, S., Margolis, D.J., MacAiran, M., Lieu, P., Huang, J., Dorey, F.J., Marks, L.S.: Targeted biopsy in the detection of prostate cancer using an office based magnetic resonance ultrasound fusion device. The Journal of Urology 189(1), 86–92 (2013)
Hu, Y., Ahmed, H.U., Taylor, Z., Allen, C., Emberton, M., Hawkes, D., Barratt, D.: MR to ultrasound registration for image-guided prostate interventions. Medical Image Analysis 16(3), 687–703 (2012)
Mitra, J., Kato, Z., Marti, R., Oliver, A., Llad, X., Sidib, D., Ghose, S., Vilanova, J.C., Comet, J., Meriaudeau, F.: A spline-based non-linear diffeomorphism for multimodal prostate registration. Medical Image Analysis 16(6), 1259–1279 (2012)
Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, S.M., Schnabel, J.A.: Mind: Modality independent neighbourhood descriptor for multi-modal deformable registration. MedIA 16(7), 1423–1435 (2012)
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: CVPR, pp. 60–65 (2005)
Hermosillo, G., Chefd’Hotel, C., Faugeras, O.D.: Variational methods for multimodal image matching. International Journal of Computer Vision 50(3), 329–343 (2002)
Wachinger, C., Navab, N.: Entropy and laplacian images: Structural representations for multi-modal registration. Medical Image Analysis 16(1), 1–17 (2012)
Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: CVPR (2010)
Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010)
Fitzpatrick, J., West, J., Maurer Jr., C.R.: Predicting error in rigid-body point-based registration. IEEE TMI 17(5), 694–702 (1998)
Zou, K., Warfield, S., Bharatha, A., Tempany, C., Kaus, M., Haker, S., Wells, W., Jolesz, F., Kikinis, R.: Statistical validation of image segmentation quality based on a spatial overlap index. Academic Radiology 11(2), 178–189 (2004)
Qiu, W., Yuan, J., Ukwatta, E., Tessier, D., Fenster, A.: Rotational-slice-based prostate segmentation using level set with shape constraint for 3D end-firing TRUS guided biopsy. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 537–544. Springer, Heidelberg (2012)
Mahdavi, S.S., Chng, N., Spadinger, I., Morris, W.J., Salcudean, S.E.: Semi-automatic segmentation for prostate interventions. Medical Image Analysis 15(2), 226–237 (2011)
Karnik, V., Fenster, A., Bax, J., Cool, D., Gardi, L., Gyacskov, I., Romagnoli, C., Ward, A.: Assessment of image registration accuracy in three-dimensional transrectal ultrasound guided prostate biopsy. Medical physics 37, 802 (2010)
Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutions for single and dynamic MRFs. In: CVPR (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sun, Y., Yuan, J., Rajchl, M., Qiu, W., Romagnoli, C., Fenster, A. (2013). Efficient Convex Optimization Approach to 3D Non-rigid MR-TRUS Registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40811-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-40811-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40810-6
Online ISBN: 978-3-642-40811-3
eBook Packages: Computer ScienceComputer Science (R0)