Abstract
This paper is on the modulation of offshore wind energy conversion systems with full-power converter and permanent magnet synchronous generator with an AC link. The drive train considered in this paper is a three-mass model which incorporates the resistant stiffness torque, structure and tower, in the deep water, due to the moving surface elevation. This moving surface influences the current from the converters. A four-level converter is considered with control strategies based on proportional integral controllers. Although more complex, this modulation is justified for more accurate results.
Chapter PDF
Similar content being viewed by others
Keywords
References
Popovic-Gerber, J., Ferreira, J.A.: Power electronics for sustainable energy future–quantifying the value of power electronics. In: 3rd IEEE Energy Conversion Congress and Exposition, Atlanta, pp. 112–119 (2010)
Saheb-Koussa, D., Haddadi, M., Belhamel, M., Hadji, S., Nouredine, S.: Modeling and simulation of the fixed-speed WECS (wind energy conversion system): Application to the Algerian Sahara area. Energy 35, 4116–4125 (2010)
Fusco, F., Nolan, G., Ringwood, J.V.: Variability reduction through optimal combination of wind/wave resources – An Irish case study. Energy 35, 314–325 (2010)
Luo, N., Bottasso, C.L., Karimi, H.R., Zapateiro, M.: Semiactive control for floating offshore wind turbines subject to aero-hydro dynamic loads. In: International Conference on Renewable Energies and Power Quality – ICREPQ 2011, Las Palmas de Gran Canaria, pp. 1–6 (2011)
Musial, W., Butterfield, S., Boone, A.: Feasibility of floating platform systems for wind turbines. National Renewable Energy Laboratory – NREL/CP – 5oo-34874 (2003)
Wilkinson, M.R., Tavner, P.J.: Condition monitoring of wind turbine drive trains. In: 17th International Conference on Electrical Machines, Chania, pp. 1–5 (2006)
Holthuijsen, L.H.: Waves in Oceanic and Coastal Waters, pp. 145–196. Cambridge University Press, Cambridge (2007)
Bir, G., Jonkman, J.: Aeroelastic instabilities of large offshore and onshore wind turbines. Journal of Physics 75, 012069 (2007)
Melício, R.: Modelos dinâmicos de sistemas de conversão de energia eólica ligados à rede eléctrica: PhD Thesis: UBI/FE/DEE, Covilhã, Portugal (2010) (in Portuguese)
Future Internet Enterprise Systems, http://www.fines-cluster.eu/fines/jm/Documents/Download-document/410-FInES-Horizon-2020_Position-Paper-v2.00_Annex.html
Offshore Wind in Europe: Lessons for the US, http://theenergycollective.com/lewmilford/282836/offshore-wind-europe-lessons-us
Digital Agenda For Europe, http://ec.europa.eu/digital-agenda/en/collective-awareness-platforms-sustainability-and-social-innovation
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 IFIP International Federation for Information Processing
About this paper
Cite this paper
Seixas, M., Melício, R., Mendes, V.M.F. (2014). Simulation of Offshore Wind Turbine Link to the Electric Grid through a Four-Level Converter. In: Camarinha-Matos, L.M., Barrento, N.S., Mendonça, R. (eds) Technological Innovation for Collective Awareness Systems. DoCEIS 2014. IFIP Advances in Information and Communication Technology, vol 423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54734-8_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-54734-8_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54733-1
Online ISBN: 978-3-642-54734-8
eBook Packages: Computer ScienceComputer Science (R0)