Abstract
Process mining sheds new light on the relationship between process models and real-life processes. Process discovery can be used to learn process models from event logs. Conformance checking is concerned with quantifying the quality of a business process model in relation to event data that was logged during the execution of the business process. There exist different categories of conformance measures. Recall, also called fitness, is concerned with quantifying how much of the behavior that was observed in the event log fits the process model. Precision is concerned with quantifying how much behavior a process model allows for that was never observed in the event log. Generalization is concerned with quantifying how well a process model generalizes to behavior that is possible in the business process but was never observed in the event log. Many recall, precision, and generalization measures have been developed throughout the years, but they are often defined in an ad-hoc manner without formally defining the desired properties up front. To address these problems, we formulate 21 conformance propositions and we use these propositions to evaluate current and existing conformance measures. The goal is to trigger a discussion by clearly formulating the challenges and requirements (rather than proposing new measures). Additionally, this paper serves as an overview of the conformance checking measures that are available in the process mining area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Every regular language has a unique minimal DFA according to the Myhill–Nerode theorem.
- 2.
Note that the term “probability” is used here in an informal manner. Since we only have example observations and no knowledge of the underlying (possibly changing) process, we cannot compute such a probability. Of course, unseen cases can have traces that have been observed before.
References
van der Aalst, W.M.P.: Mediating between modeled and observed behavior: the quest for the “Right" process. In: IEEE International Conference on Research Challenges in Information Science, RCIS 2013, pp. 31–43. IEEE Computing Society (2013)
van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P.: Relating process models and event logs: 21 conformance propositions. In: van der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) Workshop on Algorithms & Theories for the Analysis of Event Data, ATAED 2018, pp. 56–74. CEUR Workshop Proceedings (2018)
van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. WIREs Data Mining Knowl. Discov. 2(2), 182–192 (2012)
van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Chi, C.H., Johnson, P. (eds.) IEEE International Enterprise Computing Conference, EDOC 2011, pp. 55–64. IEEE Computer Society (2011)
Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.: Alignment Based Precision Checking. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36285-9_15
Augusto, A., Armas-Cervantes, A., Conforti, R., Dumas, M., La Rosa, M., Reissner, D.: Abstract-and-Compare: A Family of Scalable Precision Measures for Automated Process Discovery. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 158–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_10
Buijs, J.C.A.M.: Flexible evolutionary algorithms for mining structured process models. Ph.D. thesis, Department of Mathematics and Computer Science (2014)
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_19
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process discovery: the importance of fitness, precision, generalization and simplicity. Int. J. Coop. Inf. Syst. 23(1), 1–39 (2014)
Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating Processes and Models. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99414-7
van Dongen, B.F., Carmona, J., Chatain, T.: A Unified Approach for Measuring Precision and Generalization Based on Anti-alignments. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 39–56. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_3
van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning Modeled and Observed Behavior: A Compromise Between Computation Complexity and Quality. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94–109. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_7
Garcia-Banuelos, L., van Beest, N., Dumas, M., La Rosa, M., Mertens, W.: Complete and interpretable conformance checking of business processes. IEEE Trans. Softw. Eng. 44(3), 262–290 (2018)
Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)
Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)
Janssenswillen, G., Depaire, B.: Towards confirmatory process discovery: making assertions about the underlying system. Bus. Inf. Syst, Eng (2018)
Janssenswillen, G., Donders, N., Jouck, T., Depaire, B.: A comparative study of existing quality measures for process discovery. Inf. Syst. 50(1), 2:1–2:45 (2017)
Janssenswillen, G., Jouck, T., Creemers, M., Depaire, B.: Measuring the Quality of Models with Respect to the Underlying System: An Empirical Study. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 73–89. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_5
Kerremans, M.: Gartner Market Guide for Process Mining, Research Note G00353970 (2018). www.gartner.com
Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth Movers’ Stochastic Conformance Checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2018)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)
Muñoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2_16
Polyvyanyy, A., Solti, A., Weidlich, M., Di Ciccio, C., Mendling, J.: Behavioural quotients for precision and recall in process mining. Technical report, University of Melbourne (2018)
Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)
Rozinat A., de Medeiros A.K.A., Günther, C.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The need for a process mining evaluation framework in research and practice. In: Castellanos, M., Mendling, J., Weber, B. (eds.) Informal Proceedings of the International Workshop on Business Process Intelligence, BPI 2007, pp. 73–78. QUT, Brisbane (2007)
Syring, A.F., Tax, N., van der Aalst, W.M.P.: Evaluating Conformance Measures in Process Mining using Conformance Propositions (Extended Version). CoRR, arXiv:1909.02393 (2019)
Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The imprecisions of precision measures in process mining. Inf. Process. Lett. 135, 1–8 (2018)
vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Determining process model precision and generalization with weighted artificial negative events. IEEE Trans. Knowl. Data Eng. 26(8), 1877–1889 (2014)
De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)
De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust f-measure for evaluating discovered process models. In: Chawla, N., King, I., Sperduti, A. (eds.) IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011, pp. 148–155. IEEE, Paris (2011)
Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process Mining with the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Technology, Eindhoven (2006)
Acknowledgements
We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Syring, A.F., Tax, N., van der Aalst, W.M.P. (2019). Evaluating Conformance Measures in Process Mining Using Conformance Propositions. In: Koutny, M., Pomello, L., Kristensen, L. (eds) Transactions on Petri Nets and Other Models of Concurrency XIV. Lecture Notes in Computer Science(), vol 11790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60651-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-60651-3_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-60650-6
Online ISBN: 978-3-662-60651-3
eBook Packages: Computer ScienceComputer Science (R0)