Abstract
Odor plume tracing is a challenging robotics application, made difficult by the combination of the patchy characteristics of odor distribution and the slow response of the available sensors. This work proposes a graph-based formation control algorithm to coordinate a group of small robots equipped with odor sensors, with the goal of tracing an odor plume to its source. This approach makes it possible to organize the robots in arbitrary and evolving formation shapes with the aim of improving tracing performance. The algorithm was evaluated in a high-fidelity submicroscopic simulator, using different formations and achieving quick convergence and negligible distance overhead in laminar wind flows.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cabrita, G., Marques, L., Gazi, V.: Virtual cancelation plume for multiple odor source localization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5552–5558 (2013). doi:10.1109/IROS.2013.6697161
Cao, M.L., Meng, Q.H., Wang, X.W., Luo, B., Zeng, M., Li, W.: Localization of multiple odor sources via selective olfaction and adapted ant colony optimization algorithm. In: IEEE International Conference on Robotics and Biomimetics, pp. 1222–1227 (2013). doi:10.1109/ROBIO.2013.6739631
de Croon, G., O’Connor, L., Nicol, C., Izzo, D.: Evolutionary robotics approach to odor source localization. Neurocomputing 121, 481–497 (2013). doi:10.1016/j.neucom.2013.05.028
Dhariwal, A., Sukhatme, G., Requicha, A.: Bacterium-inspired robots for environmental monitoring. In: IEEE International Conference on Robotics and Automation, pp. 1436–1443 (2004). doi:10.1109/ROBOT.2004.1308026
Distante, C., Indiveri, G., Reina, G.: An application of mobile robotics for olfactory monitoring of hazardous industrial sites. Ind. Rob. Int. J. 36(1), 51–59 (2009). doi:10.1108/01439910910924675
Falconi, R., Gowal, S., Martinoli, A.: Graph based distributed control of non-holonomic vehicles endowed with local positioning information engaged in escorting missions. In: IEEE International Conference on Robotics and Automation, pp. 3207–3214 (2010). doi:10.1109/ROBOT.2010.5509139
Farrell, J.A., Murlis, J., Long, X., Li, W., Cardé, R.T.: Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes. Environ. Fluid Mech. 2(1–2), 143–169 (2002). doi:10.1023/A:1016283702837
Genovese, V., Dario, P., Magni, R., Odetti, L.: Self organizing behavior and swarm intelligence in a pack of mobile miniature robots in search of pollutants. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 3, 1575–1582 (1992). doi:10.1109/IROS.1992.594225
Hartman, J.: A possible method for the rapid estimation of flavours in vegetables. Proc. Am. Soc. Hort. Sci. 64, 335–342 (1954)
Hayes, A., Martinoli, A., Goodman, R.: Distributed odor source localization. IEEE Sens. J. 2(3), 260–271 (2002). doi:10.1109/JSEN.2002.800682
Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J.: Plume-tracking robots: a new application of chemical sensors. Biol. Bull. 200(2), 222–226 (2001)
Jatmiko, W., Sekiyama, K., Fukuda, T.: A PSO-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment: theory, simulation and measurement. IEEE Comput. Intell. Mag. 2(2), 37–51 (2007). doi:10.1109/MCI.2007.353419
Khalili, A., Rastegarnia, A., Islam, M.K., Yang, Z.: A bio-inspired cooperative algorithm for distributed source localization with mobile nodes. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3515–3518 (2013). doi:10.1109/EMBC.2013.6610300
Kowadlo, G., Russell, R.A.: Robot odor localization: a taxonomy and survey. Int. J. Robot. Res. 27(8), 869–894 (2008). doi:10.1177/0278364908095118
Li, J.G., Meng, Q.H., Wang, Y., Zeng, M.: Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Auton. Rob. 30(3), 281–292 (2011). doi:10.1007/s10514-011-9219-2
Lilienthal, A., Duckett, T.: Experimental analysis of gas-sensitive Braitenberg vehicles. Adv. Robot. 18(8), 817–834 (2004). doi:10.1163/1568553041738103
Lochmatter, T.: Bio-inspired and probabilistic algorithms for distributed odor source localization using mobile robots. Ph.D. thesis 4628, EPFL (2010). doi:10.5075/epfl-thesis-4628
Lochmatter, T., Göl, E., Navarro, I., Martinoli, A.: A plume tracking algorithm based on crosswind formations. In: International Symposium on Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics (2013), vol. 83, pp. 91–102 (2010). doi:10.1007/978-3-642-32723-0_7
Marjovi, A., Marques, L.: Optimal swarm formation for odor plume finding. IEEE Trans. Cybern. 99 (2014). doi:10.1109/TCYB.2014.2306291
Marques, L., Nunes, U., de Almeida, A.T.: Olfaction-based mobile robot navigation. Thin Solid Films 418(1), 51–58 (2002). doi:10.1016/S0040-6090(02)00593-X
Marques, L., Nunes, U., Almeida, A.T.: Particle swarm-based olfactory guided search. Auton. Rob. 20(3), 277–287 (2006). doi:10.1007/s10514-006-7567-0
Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010)
Michel, O.: Webots: professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1(1), 39–42 (2004). doi:10.5772/5618
Moncrieff, R.W.: An instrument for measuring and classifying odors. J. Appl. Physiol. 16(4), 742–749 (1961)
Pugh, J., Raemy, X., Favre, C., Falconi, R., Martinoli, A.: A Fast onboard relative positioning module for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 151–162 (2009). doi:10.1109/TMECH.2008.2011810
Roberts, P.J.W., Webster, D.R.: Turbulent Diffusion. ASCE Press, Reston, Virginia (2002)
Rozas, R., Morales, J., Vega, D.: Artificial smell detection for robotic navigation. In: International Conference on Advanced Robotics, pp. 1730–1733 (1991). doi:10.1109/ICAR.1991.240354
Vergassola, M., Villermaux, E., Shraiman, B.I.: ‘Infotaxis’ as a strategy for searching without gradients. Nature 445(7126), 406–409 (2007). doi:10.1038/nature05464
Acknowledgments
This work was partially funded by project PEst-OE/EEI/LA0009/2013 and grant SFRH/BD/51073/2010 from Fundação para a Ciência e Tecnologia. We sincerely thank Ali Marjovi at DISAL for the detailed and constructive comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Japan
About this paper
Cite this paper
Soares, J.M., Aguiar, A.P., Pascoal, A.M., Martinoli, A. (2016). A Graph-Based Formation Algorithm for Odor Plume Tracing. In: Chong, NY., Cho, YJ. (eds) Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 112 . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55879-8_18
Download citation
DOI: https://doi.org/10.1007/978-4-431-55879-8_18
Published:
Publisher Name: Springer, Tokyo
Print ISBN: 978-4-431-55877-4
Online ISBN: 978-4-431-55879-8
eBook Packages: EngineeringEngineering (R0)