Skip to main content

Omega-Shape Feature Learning for Robust Human Detection

  • Conference paper
  • First Online:
Pattern Recognition (CCPR 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 662))

Included in the following conference series:

Abstract

For most top view surveillance scenes, due to having little pose variations and being robust to partial occlusion, people’s head-shoulder Omega-like shapes are proven to be good cues for human detection. In this paper, we focus on learning Omega-shape features with improved discriminative ability in human detection. Orthogonal non-negative matrix factorization (ONMF) is introduced to model the local semantic parts of Omega-like shapes, which is much more robust to noise corruption and local occlusion. The properties only allowing additive, not subtractive combinations of ONMF can well suppress some background clutter. Furthermore, we introduce metric learning into SVM decision framework where object/nonobject classification is performed within a learned feasible metric space. Experimental results on a number of challenging datasets demonstrate the effectiveness and robustness of the proposed human detection method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oren, M., Papageorgiou, C., Sinha, P., et al.: Pedestrian detection using wavelet templates. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–199 (1997)

    Google Scholar 

  2. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: International Conference on Computer Vision, pp. 734–741 (2003)

    Google Scholar 

  3. Mu, Y., Yan, S., Liu, Y., et al.: Discriminative local binary patterns for human detection in personal album. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  4. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: IEEE International Conference on Computer Vision, pp. 90–97 (2005)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  6. Wu, J.X., Geyer, C., Rehg, J.M.: Real-time human detection using contour cues. In: IEEE International Conference on Robotics and Automation, pp. 860–867 (2011)

    Google Scholar 

  7. Wu, J.X., Liu, N.N., Geyer, C., Rehg, J.M.: C4: a real-time object detection framework. IEEE Trans. Image Process. 22(10), 4096–4107 (2013)

    Article  MathSciNet  Google Scholar 

  8. Wu, J.X., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1489–1501 (2011)

    Article  Google Scholar 

  9. Lin, Z., Davis, L.S.: A pose-invariant descriptor for human detection and segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 423–436. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_31

    Chapter  Google Scholar 

  10. Felzenszwalb, P.F., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  11. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  12. Li, M., Zhang, Z., Huang, K., et al.: Rapid and robust human detection and tracking based on omega-shape features. In: IEEE International Conference on Image Processing, pp. 2545–2548 (2009)

    Google Scholar 

  13. Li, M., Zhang, Z., Huang, K., et al.: Estimating the number of people in crowded scenes by mid-based foreground segmentation and head-shoulder detection. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  14. He, F., Li, Y.L., Wang, S.J., Ding, X.Q.: A novel hierarchical framework for human head-shoulder detection. In: International Congress on Image and Signal processing, pp. 1485–1489 (2011)

    Google Scholar 

  15. Julio, C.S., Jung, C.R., Soraia, R.M.: Head-shoulder human contour estimation in still images. In: International Conference on Image Processing, pp. 278–282 (2014)

    Google Scholar 

  16. Julio, C.S., Soraia, R.M.: Improved head-shoulder human contour estimation through clusters of learned shape models. In: SIGBRAPI Conference on Graphics, Patterns and Images, pp. 329–336 (2015)

    Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  19. Yoo, J., Choi, S.: Orthogonal nonnegative matrix factorization: multiplicative updates on stiefel manifolds. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 140–147. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88906-9_18

    Chapter  Google Scholar 

  20. Mauthner, T., Kluckner, S., Roth, P.M., Bischof, H.: Efficient object detection using orthogonal NMF descriptor hierarchies. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 212–221. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15986-2_22

    Chapter  Google Scholar 

  21. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  22. Liu, Y., Caselles, V.: Improved support vector machines with distance metric learning. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 82–91. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23687-7_8

    Chapter  Google Scholar 

  23. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the International Conference on Machine Learning, pp. 209–216 (2007)

    Google Scholar 

  24. Globerson, A., Roweis, S.: Metric learning by collapsing classes. In: Proceedings of Advances in Neural Information Processing Systems, pp. 451–458 (2005)

    Google Scholar 

  25. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  26. http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

  27. Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian recognition with a learned metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19282-1_40

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant NSFC 61472063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Liu, P., Zhou, X., Cai, S. (2016). Omega-Shape Feature Learning for Robust Human Detection. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3002-4_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3001-7

  • Online ISBN: 978-981-10-3002-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy