Abstract
For most top view surveillance scenes, due to having little pose variations and being robust to partial occlusion, people’s head-shoulder Omega-like shapes are proven to be good cues for human detection. In this paper, we focus on learning Omega-shape features with improved discriminative ability in human detection. Orthogonal non-negative matrix factorization (ONMF) is introduced to model the local semantic parts of Omega-like shapes, which is much more robust to noise corruption and local occlusion. The properties only allowing additive, not subtractive combinations of ONMF can well suppress some background clutter. Furthermore, we introduce metric learning into SVM decision framework where object/nonobject classification is performed within a learned feasible metric space. Experimental results on a number of challenging datasets demonstrate the effectiveness and robustness of the proposed human detection method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Oren, M., Papageorgiou, C., Sinha, P., et al.: Pedestrian detection using wavelet templates. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–199 (1997)
Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: International Conference on Computer Vision, pp. 734–741 (2003)
Mu, Y., Yan, S., Liu, Y., et al.: Discriminative local binary patterns for human detection in personal album. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In: IEEE International Conference on Computer Vision, pp. 90–97 (2005)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)
Wu, J.X., Geyer, C., Rehg, J.M.: Real-time human detection using contour cues. In: IEEE International Conference on Robotics and Automation, pp. 860–867 (2011)
Wu, J.X., Liu, N.N., Geyer, C., Rehg, J.M.: C4: a real-time object detection framework. IEEE Trans. Image Process. 22(10), 4096–4107 (2013)
Wu, J.X., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1489–1501 (2011)
Lin, Z., Davis, L.S.: A pose-invariant descriptor for human detection and segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 423–436. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88693-8_31
Felzenszwalb, P.F., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Li, M., Zhang, Z., Huang, K., et al.: Rapid and robust human detection and tracking based on omega-shape features. In: IEEE International Conference on Image Processing, pp. 2545–2548 (2009)
Li, M., Zhang, Z., Huang, K., et al.: Estimating the number of people in crowded scenes by mid-based foreground segmentation and head-shoulder detection. In: International Conference on Pattern Recognition, pp. 1–4 (2008)
He, F., Li, Y.L., Wang, S.J., Ding, X.Q.: A novel hierarchical framework for human head-shoulder detection. In: International Congress on Image and Signal processing, pp. 1485–1489 (2011)
Julio, C.S., Jung, C.R., Soraia, R.M.: Head-shoulder human contour estimation in still images. In: International Conference on Image Processing, pp. 278–282 (2014)
Julio, C.S., Soraia, R.M.: Improved head-shoulder human contour estimation through clusters of learned shape models. In: SIGBRAPI Conference on Graphics, Patterns and Images, pp. 329–336 (2015)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)
Yoo, J., Choi, S.: Orthogonal nonnegative matrix factorization: multiplicative updates on stiefel manifolds. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol. 5326, pp. 140–147. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88906-9_18
Mauthner, T., Kluckner, S., Roth, P.M., Bischof, H.: Efficient object detection using orthogonal NMF descriptor hierarchies. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 212–221. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15986-2_22
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2000)
Liu, Y., Caselles, V.: Improved support vector machines with distance metric learning. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2011. LNCS, vol. 6915, pp. 82–91. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23687-7_8
Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: Proceedings of the International Conference on Machine Learning, pp. 209–216 (2007)
Globerson, A., Roweis, S.: Metric learning by collapsing classes. In: Proceedings of Advances in Neural Information Processing Systems, pp. 451–458 (2005)
Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)
Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian recognition with a learned metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19282-1_40
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant NSFC 61472063.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Liu, P., Zhou, X., Cai, S. (2016). Omega-Shape Feature Learning for Robust Human Detection. In: Tan, T., Li, X., Chen, X., Zhou, J., Yang, J., Cheng, H. (eds) Pattern Recognition. CCPR 2016. Communications in Computer and Information Science, vol 662. Springer, Singapore. https://doi.org/10.1007/978-981-10-3002-4_25
Download citation
DOI: https://doi.org/10.1007/978-981-10-3002-4_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3001-7
Online ISBN: 978-981-10-3002-4
eBook Packages: Computer ScienceComputer Science (R0)