Skip to main content

Edge Computing-Enabled Resource Provisioning for Video Surveillance in Internet of Vehicles

  • Conference paper
  • First Online:
Smart City and Informatization (iSCI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1122))

Included in the following conference series:

  • 1534 Accesses

Abstract

As a novel technology, Internet of Vehicles (IoV) is employed to gather real-time traffic information for drivers from sensors and video surveillance devices with image processing, circumstances analysis and events recognition. In spite of multiple advantages of IoV, preprocessing the huge data may demand abundant computation resources for video surveillance devices. Migrating tasks to remote servers for performing is efficient to solve this problem, but it needs high network bandwidth, which causes traffic congestion and delay. Edge computing has capability to enhance processing performance, which complements video surveillance device and addresses numerous shortcomings. Nevertheless, edge computing for video surveillance remains a challenge to achieve low-latency and load balance through limited amount of edge servers. To handle this challenge, an Edge computing-enabled Resource Provisioning Method (ERPM) for Video Surveillance in IoV is proposed in this paper. Technically, SPEA2 (improving the Strength Pare to Evolutionary Algorithm) is picked to solve the multi-objective optimization problem aiming at minimizing the time consumption and optimizing load balance. Finally, experimental simulation for Evolution algorithm demonstrate the appropriation and efficiency of ERPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  2. Xu, Z., et al.: An IoT-oriented offloading method with privacy preservation for cloudlet-enabled wireless metropolitan area networks. Sensors 18(9), 3030 (2018)

    Article  Google Scholar 

  3. Kumar, N., Rodrigues, J.J., Chilamkurti, N.: Bayesian coalition game as-a-service for content distribution in internet of vehicles. IEEE Internet Things J. 1(6), 544–555 (2014)

    Article  Google Scholar 

  4. Puvvadi, U.L., Di Benedetto, K., Patil, A., Kang, K.D., Park, Y.: Cost-effective security support in real-time video surveillance. IEEE Trans. Ind. Inform. 11(6), 1457–1465 (2015)

    Article  Google Scholar 

  5. Long, C., Cao, Y.: Edge computing framework for cooperative video processing in multimedia IoT systems. IEEE Trans. Multimedia 20(5), 1126–1139 (2018)

    Article  Google Scholar 

  6. Lopez, P., et al.: Edge-centric computing: vision and challenges. ACMSIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)

    Article  Google Scholar 

  7. Eriksson, E., Dán, G.: Predictive distributed visual analysis for video in wireless sensor networks. IEEE Trans. Mob. Comput. 15(7), 1743–1756 (2016)

    Article  Google Scholar 

  8. Zhang, J., et al.: Hybrid computation offloading for smart home automation in mobile cloud computing. Pers. Ubiquitous Comput. 22(1), 121–134 (2018)

    Article  Google Scholar 

  9. Zhang, J., Qi, L., Yuan, Y., Xu, X., Dou, W.: A workflow scheduling method for cloudlet management in mobile cloud. In: 2018 IEEE SmartWorld. https://doi.org/10.1109/SmartWorld.2018.00167

  10. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  11. Qi, L., Chen, Y., Yuan, Y., Fu, S., Zhang, X., Xu, X.: A QoS-aware virtual machine scheduling method for energy conservation in cloud-based cyber-physical systems. World Wide Web J. (2019). https://doi.org/10.1007/s11280-019-00684-y

  12. Qi, L., et al.: Finding all you need: web APIs recommendation in web of things through keywords search. IEEE Trans. Comput. Soc. Syst. (2019). https://doi.org/10.1109/TCSS.2019.2906925

    Article  Google Scholar 

  13. Wu, P.-H., Huang, C.-W., Hwang, J.-N.: Video-quality-driven resource allocation for real-time surveillance video uplinking over OFDMA-based wireless networks. IEEE Trans. Veh. Technol. 64(7), 3233–3246 (2015)

    Google Scholar 

  14. Chen, J., Li, K.: Distributed deep learning model for intelligent video surveillance systems with edge computing. IEEE Trans. Ind. Inform. https://doi.org/10.1109/TII.2019.2909473

  15. Xu, X., et al.: An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks. J. Netw. Comput. Appl. 133, 75–85 (2019)

    Article  Google Scholar 

  16. Al-Nadwi, M.M.K., Refat, N., Zaman, N., Rahman, M.A., Bhuiyan, M.Z.A., Razali, R.B.: Cloud enabled e-glossary system: a smart campus perspective. In: Wang, G., Chen, J., Yang, L.T. (eds.) SpaCCS 2018. LNCS, vol. 11342, pp. 251–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05345-1_21

    Chapter  Google Scholar 

  17. Yang, J., Wang, H., Wang, Z., Long, J., Du, B.: BDCP: a framework for big data copyright protection based on digital watermarking. In: Wang, G., Chen, J., Yang, L.T. (eds.) SpaCCS 2018. LNCS, vol. 11342, pp. 351–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05345-1_30

    Chapter  Google Scholar 

Download references

Acknowledgment

This research is supported by the National Science Foundation of China under grant no. 61702277 and 61872219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyong Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Wu, Q., He, C., Wan, S., Qi, L., Wang, H. (2019). Edge Computing-Enabled Resource Provisioning for Video Surveillance in Internet of Vehicles. In: Wang, G., El Saddik, A., Lai, X., Martinez Perez, G., Choo, KK. (eds) Smart City and Informatization. iSCI 2019. Communications in Computer and Information Science, vol 1122. Springer, Singapore. https://doi.org/10.1007/978-981-15-1301-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1301-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1300-8

  • Online ISBN: 978-981-15-1301-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy