Abstract
With the development of the Industrial Internet, the invulnerability of the cyber-physical fusion system (CPFS) has received extensive attention and in-depth research in recent years. In this paper, based on the theory of network cascading failure and facing the heterogeneous information physics fusion system environment, we propose a system enhancement reliability strategy based on the intranal edge of the network. By calculating the size of the most significant functional component in the entire system, we compared and analyzed the heterogeneous information physical fusion system’s invulnerability under random attack.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banerjee, S., Balas, V.E., Pandey, A., Bouzefrane, S.: Towards intelligent optimization of design strategies of cyber-physical systems: measuring efficacy through evolutionary computations. In: Llanes Santiago, O., Cruz Corona, C., Silva Neto, A.J., Verdegay, J.L. (eds.) Computational Intelligence in Emerging Technologies for Engineering Applications. SCI, vol. 872, pp. 73–101. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34409-2_5
Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)
Chen, L., Yue, D., Dou, C., Cheng, Z., Chen, J.: Robustness of cyber-physical power systems in cascading failure: survival of interdependent clusters. Int. J. Electr. Power Ener. Syst. 114, 105374 (2020)
Ding, D., Han, Q.L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Ind. Inf. 15(5), 2483–2499 (2019)
Dong, G., Chen, Y., Wang, F., Du, R., Tian, L., Stanley, H.E.: Robustness on interdependent networks with a multiple-to-multiple dependent relationship. Chaos Interdisc. J. Nonlinear Sci. 29(7), 073107 (2019)
Gazafroudi, A.S., Shafie-khah, M., Fitiwi, D.Z., Santos, S.F., Corchado, J.M., Catalão, J.P.S.: impact of strategic behaviors of the electricity consumers on power system reliability. In: Amini, M.H., Boroojeni, K.G., Iyengar, S.S., Pardalos, P.M., Blaabjerg, F., Madni, A.M. (eds.) Sustainable Interdependent Networks II. SSDC, vol. 186, pp. 193–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98923-5_11
Hassan, M.U., Rehmani, M.H., Chen, J.: Differential privacy techniques for cyber physical systems: a survey. IEEE Commun. Surv. Tutorials 22, 746–789 (2019)
Hesse, M., Dann, D., Braesemann, F., Teubner, T.: Understanding the platform economy: signals, trust, and social interaction. In: HICSS 2020 Proceedings, Maui, pp. 1–10 (2020)
Huang, Z., Wang, C., Stojmenovic, M., Nayak, A.: Characterization of cascading failures in interdependent cyber-physical systems. IEEE Trans. Comput. 64(8), 2158–2168 (2015)
Jerraya, A.A.: Hardware/software interface codesign for cyber physical systems. In: Bhattacharyya, S.S., Potkonjak, M., Velipasalar, S. (eds.) Embedded, Cyber-Physical, and IoT Systems, pp. 73–77. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16949-7_3
Ji, X., et al.: Improving interdependent networks robustness by adding connectivity links. Physica A Stat. Mech. Appl. 444, 9–19 (2016)
Kandah, F., Cancelleri, J., Reising, D., Altarawneh, A., Skjellum, A.: A hardware-software codesign approach to identity, trust, and resilience for IoT/CPS at scale. In: 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1125–1134. IEEE (2019)
Kumari, P., Singh, A.: Approximation and updation of betweenness centrality in dynamic complex networks. In: Verma, N.K., Ghosh, A.K. (eds.) Computational Intelligence: Theories, Applications and Future Directions - Volume I. AISC, vol. 798, pp. 25–37. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1132-1_3
Lai, R., Qiu, X., Wu, J.: Robustness of asymmetric cyber-physical power systems against cyber attacks. IEEE Access 7, 61342–61352 (2019)
Li, S., Zhao, S., Yang, P., Andriotis, P., Xu, L., Sun, Q.: Distributed consensus algorithm for events detection in cyber-physical systems. IEEE Internet Things J. 6(2), 2299–2308 (2019)
Newman, M.: Networks. Oxford University Press, Oxford (2018)
Peng, H., Kan, Z., Zhao, D., Han, J.: Security assessment for interdependent heterogeneous cyber physical systems. Mob. Netw. Appl. 12(1), 1–11 (2019)
Yamagata, Y., Liu, S., Akazaki, T., Duan, Y., Hao, J.: Falsification of cyber-physical systems using deep reinforcement learning. IEEE Trans. Softw. Eng. (2020). https://doi.org/10.1109/TSE.2020.2969178
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Peng, H., Liu, C., Zhao, D., Hu, Z., Han, J. (2020). Invulnerability of Heterogeneous CPFS Under Different Intranal Border-adding Strategies. In: Xu, G., Liang, K., Su, C. (eds) Frontiers in Cyber Security. FCS 2020. Communications in Computer and Information Science, vol 1286. Springer, Singapore. https://doi.org/10.1007/978-981-15-9739-8_23
Download citation
DOI: https://doi.org/10.1007/978-981-15-9739-8_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-9738-1
Online ISBN: 978-981-15-9739-8
eBook Packages: Computer ScienceComputer Science (R0)