Skip to main content

Traveling Agents and Indirect Epidemic Transmission

  • Conference paper
  • First Online:
Agents and Multi-Agent Systems: Technologies and Applications 2021

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 241))

  • 754 Accesses

Abstract

Indirect spread of infection at a physical location, which might be through the fomite or airborne route, has been studied on dynamic contact networks. We report a framework and some results that uses individual or agent-based simulations. We study this primarily in the context of agents traveling across locations, leaving “droplets” of infection when leaving a location. We abstract out technical details of diffusion dynamics to arrive at a simple tool that facilitates easy what-if analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajelli, M., Gonçalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J.J., Merler, S., Vespignani, A.: Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect Dis 10(1), 190 (2010). https://doi.org/10.1186/1471-2334-10-190

  2. Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: Episimdemics: an efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. pp. 1–12 (2008)

    Google Scholar 

  3. Bisset, K.R., Chen, J., Feng, X., Kumar, V.A., Marathe, M.V.: Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In: Proceedings of the 23rd International Conference on Supercomputing, pp. 430–439. ICS ’09, Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1542275.1542336

  4. Cuevas, E.: An agent-based model to evaluate the covid-19 transmission risks in facilities. Comput. Biol. Med. 121, 103827–103827 (2020). https://pubmed.ncbi.nlm.nih.gov/32568667

  5. Enright, J., Kao, R.R.: Epidemics on dynamic networks. Epidemics 24, 88–97 (2018)

    Article  Google Scholar 

  6. Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004). https://doi.org/10.1038/nature02541

  7. Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley, P.C., Burke, D.S.: Strategies for mitigating an influenza pandemic. Nature 442(7101), 448–452 (2006). https://doi.org/10.1038/nature04795

  8. Hoertel, N., Blachier, M., Blanco, C., Olfson, M., Massetti, M., Limosin, F., Leleu, H.: Facing the covid-19 epidemic in nyc: a stochastic agent-based model of various intervention strategies. medRxiv (2020). https://www.medrxiv.org/content/early/2020/04/28/2020.04.23.20076885

  9. Hoertel, N., Blachier, M., Blanco, C., Olfson, M., Massetti, M., Rico, M.S., Limosin, F., Leleu, H.: A stochastic agent-based model of the sars-cov-2 epidemic in france. Nature Med. 26(9), 1417–1421 (2020)

    Article  Google Scholar 

  10. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. Roy. Soc. Interface 2(4), 295–307 (2005)

    Google Scholar 

  11. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London, Series A. Containing Papers of a Mathematical and Physical Character, vol. 115(772), pp. 700–721 (1927)

    Google Scholar 

  12. Kraay, A.N., Hayashi, M.A., Hernandez-Ceron, N., Spicknall, I.H., Eisenberg, M.C., Meza, R., Eisenberg, J.N.: Fomite-mediated transmission as a sufficient pathway: a comparative analysis across three viral pathogens. BMC Infect. Dis. 18(1), 540 (2018)

    Article  Google Scholar 

  13. Kurahashi, S.: An agent-based infectious disease model of rubella outbreaks. In: Jezic, G., Chen-Burger, Y.J., Kusek, M., Sperka, R., Howlett, R.J., Jain, L.C. (eds.) Agents and multi-agent systems: technologies and applications 2019. 13th KES International Conference, KES-AMSTA-2019 St. Julians, Malta, June 2019 Proceedings, pp. 237–247. Springer (2019). https://doi.org/10.1007/978-981-13-8679-4_20

  14. Lipiński, B., Tarnawski, T.: Concept of analysing spreading of an “epidemics” by means of a multi-agent simulation. In: Jedrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) Agent and multi-agent systems: technologies and applications, pp. 411–419. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)

    Google Scholar 

  15. Meyers, L., Newman, M., Pourbohloul, B.: Predicting epidemics on directed contact networks. J. Theor. Biol. 240(3), 400–418 (2006)

    Article  MathSciNet  Google Scholar 

  16. Noakes, C.J., Beggs, C.B., Sleigh, P.A., Kerr, K.G.: Modelling the transmission of airborne infections in enclosed spaces. Epidemiol. Infect. 134(5), 1082–1091 (2006)

    Google Scholar 

  17. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  18. Perez, L., Dragicevic, S.: An agent-based approach for modeling dynamics of contagious disease spread. Int. J. Health Geograph. 8(1), 50 (2009)

    Article  Google Scholar 

  19. Shahzamal, M., Jurdak, R., Mans, B., El Shoghri, A., De Hoog, F.: Impact of indirect contacts in emerging infectious disease on social networks. In: Ganji, M., Rashidi, L., Fung, B.C.M., Wang, C. (eds.) Trends and applications in knowledge discovery and data mining, pp. 53–65. Springer International Publishing, Cham (2018)

    Google Scholar 

  20. Venkatramanan, S., Lewis, B., Chen, J., Higdon, D., Vullikanti, A., Marathe, M.: Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 22, 43–49 (2018). http://www.sciencedirect.com/science/article/pii/S1755436517300221. The RAPIDD Ebola Forecasting Challenge

  21. Xiao, S., Li, Y., Wong, T.W., Hui, D.S.C.: Role of fomites in sars transmission during the largest hospital outbreak in Hong Kong. PLOS ONE 12(7), 1–13 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Kumar Pandey or M. V. Panduranga Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar Pandey, R., Panduranga Rao, M.V. (2021). Traveling Agents and Indirect Epidemic Transmission. In: Jezic, G., Chen-Burger, J., Kusek, M., Sperka, R., Howlett, R.J., Jain, L.C. (eds) Agents and Multi-Agent Systems: Technologies and Applications 2021. Smart Innovation, Systems and Technologies, vol 241. Springer, Singapore. https://doi.org/10.1007/978-981-16-2994-5_31

Download citation

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy